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Abstract 16 

An operational streamflow forecasting testbed was implemented during the Intense 17 

Observing Period (IOP) of the Integrated Precipitation and Hydrology Experiment (IPHEx-IOP) 18 

in May-June 2014 to characterize flood predictability in complex terrain.  Specifically, 19 

hydrological forecasts were issued daily for 12 headwater catchments in the Southern 20 

Appalachians using the Duke Coupled surface-groundwater Hydrology Model (DCHM) forced 21 

by hourly atmospheric fields and QPFs (Quantitative Precipitation Forecasts) produced by the 22 

NASA-Unified Weather Research and Forecasting (NU-WRF) model.  Previous day hindcasts 23 

forced by radar-based QPEs (Quantitative Precipitation Estimates) were used to provide initial 24 

conditions for present day forecasts.  This manuscript first describes the operational testbed 25 

framework and workflow during the IPHEx-IOP including a synthesis of results.  Second, 26 

various data assimilation approaches are explored a posteriori (post-IOP) to improve operational 27 

(flash) flood forecasting.  Although all flood events during the IOP were predicted by the IPHEx 28 

operational testbed with lead times of up to 6 hours, significant errors of over- and, or under-29 

prediction were identified that could be traced back to the QPFs and subgrid-scale variability of 30 

radar QPEs. To improve operational flood prediction, three data-merging strategies were pursued 31 

post-IOP: 1) the spatial patterns of QPFs were improved through assimilation of satellite-based 32 

microwave radiances into NU-WRF; 2) QPEs were improved by merging raingauge observations 33 

with ground-based radar observations using bias-correction methods to produce streamflow 34 

hindcasts and associated uncertainty envelope capturing the streamflow observations, and 3) 35 

river discharge observations were assimilated into the DCHM to improve streamflow forecasts 36 

using the Ensemble Kalman Filter (EnKF), the fixed-lag Ensemble Kalman Smoother (EnKS), 37 

and the Asynchronous EnKF (i.e. AEnKF) methods.   Both flood hindcasts and forecasts were 38 
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significantly improved by assimilating discharge observations into the DCHM.  Specifically, 39 

Nash-Sutcliff Efficiency (NSE) values as high as 0.98, 0.71 and 0.99 at 15-min time-scales were 40 

attained for three headwater catchments in the inner mountain region demonstrating that the 41 

assimilation of discharge observations at the basin’s outlet can reduce the errors and 42 

uncertainties in soil moisture at very small scales. Success in operational flood forecasting at 43 

lead times of 6, 9, 12 and 15hrs was also achieved through discharge assimilation with NSEs of 44 

0.87, 0.78, 0.72 and 0.51, respectively. Analysis of experiments using various data assimilation 45 

system configurations indicates that the optimal assimilation time window depends both on basin 46 

properties and storm-specific space-time-structure of rainfall, and therefore adaptive, context-47 

aware, configurations of the data assimilation system are recommended to address the challenges 48 

of flood prediction in headwater basins.  49 

 50 
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1. Introduction 55 

Floods are the most ubiquitous natural hazard, and flashfloods in particular remain a 56 

leading cause of natural hazard deaths in the US (NRC, 2005).   Due to rapid flow responses (≤6 57 

hours) at small spatial scales and large uncertainties associated with all hydrometeorological and 58 

hydrological processes involved in the forecasting chain, flashflood prediction remains a grand 59 

challenge in operational hydrology (Collier, 2007), including Quantitative Precipitation 60 

Estimates (QPEs) (Ciach et al., 2007; Gourley and Vieux, 2005; Kirstetter et al., 2012; Tao and 61 

Barros, 2013; Vasiloff et al., 2007; Zoccatelli et al., 2010), Quantitative Precipitation Forecasts 62 

(QPFs) (Amengual et al., 2009; Cuo et al., 2011; Davolio et al., 2013; Dietrich et al., 2009; Jaun 63 

and Ahrens, 2009; Mascaro et al., 2010; Rabuffetti et al., 2008; Rossa et al., 2011; Zappa et al., 64 

2010), highly non-linear model representations of hydrological process (Garambois et al., 2013; 65 

Garcia-Pintado et al., 2009; Zappa et al., 2011), and probability-based decision rules (Coccia and 66 

Todini, 2011; Dietrich et al., 2009; Hersbach, 2000) or threshold-based (either for rainfall or 67 

discharge level) warning criteria (Demargne et al., 2009; Martina et al., 2008; Norbiato et al., 68 

2008; Rabuffetti and Barbero, 2005; Welles et al., 2007) as well. The predictability of 69 

flashfloods is particularly  challenging in ungauged/poorly gauged and remote basins (Moore et 70 

al., 2006; Norbiato et al., 2008; Reed et al., 2007; Tao and Barros, 2013; Versini et al., 2014) and 71 

in mountainous regions where other geo-hazards such as landslides (e.g. debris flows) are often 72 

associated with heavy rainfall (Band et al., 2012; Casadel et al., 2003; Liao et al., 2011; Tao and 73 

Barros, 2014a; Wooten et al., 2008).  74 

Operational hydrological forecasting and nowcasting for flashflood warning is stipulated 75 

on  three tenets (Cloke and Pappenberger, 2009; Cuo et al., 2011; Droegemeier et al., 2000; 76 

Hapuarachchi et al., 2011; Liu et al., 2012; Pagano et al., 2014; Vrugt et al., 2006): 1) 77 
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availability of accurate QPFs with adequate lead times for effective warning and emergency 78 

response; 2) availability of  near real-time comprehensive observing systems (a variety of data 79 

and observing systems, hereafter referred to as data support including ground- and satellite-based 80 

QPEs, raingauge observations, and river discharge observations; and 3) data assimilation systems 81 

(DAS) to  merge and integrate available observations (i.e. discharge, satellite-based soil 82 

moisture, etc.) into hydrologic models to improve initial conditions for flood forecasting using 83 

physically-based distributed hydrologic models. Here, we briefly review each element and 84 

propose strategies to improve the predictability of flashfloods in regions of complex terrain in the 85 

context of the operational hydrological forecasting testbed implemented in the Southern 86 

Appalachians for the Integrated Precipitation and Hydrology Experiment (IPHEx) campaign 87 

(Barros et al., 2014). The use of physically-based and fully-distributed hydrologic models for 88 

flood forecasting poses additional challenges on account of high nonlinearity of rainfall-runoff 89 

response in space and time, further compounded by surface-groundwater interactions (Pagano et 90 

al., 2014; Werner et al., 2009), which is also examined here with the Duke Coupled surface-91 

groundwater Hydrology Model (DCHM). 92 

1) QPFs – Over recent years, ensemble prediction systems (EPS) for ensemble 93 

streamflow prediction (ESP) have become increasingly ubiquituous in flood forecast operations 94 

(Cloke and Pappenberger, 2009; Schaake et al., 2007), including the EFAS (European Flood 95 

Alert System, Europe) (Alfieri et al., 2014; Bartholmes et al., 2009; Pappenberger et al., 2015; 96 

Thielen et al., 2009), the operational HEPS (Hydrometeorological Ensemble Prediction System, 97 

Switzerland) (Addor et al., 2011), and many others (De Jongh et al., 2012; Hsiao et al., 2013; 98 

Nester et al., 2012; Pappenberger et al., 2015; Taramasso et al., 2005; Verbunt et al., 2007; 99 

Zappa et al., 2010).  In the United States, the NWS’s Hydrologic Ensemble Forecast Service 100 
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(HEFS), a part of the Advanced Hydrologic Prediction Service (AHPS) (Connelly et al., 1999; 101 

Hogue et al., 2000; McEnery et al., 2005), operationally provides ensemble flow forecasts using 102 

ensemble mean QPFs from multiple NWP models for flood risk management and other water-103 

related needs (Demargne et al., 2014).  However, NWP-based QPFs have long been found 104 

inadequate in terms of rainfall intensity and variability, with cumulative rainfall amounts that 105 

dominate forecast errors and uncertainty, especially for small to medium size basins and in 106 

mountainous regions (Amengual et al., 2008; Cuo et al., 2011; Ebert, 2001; Jasper et al., 2002; 107 

Lu et al., 2010; Pappenberger et al., 2005; Xuan et al., 2009). In addition, a gap exists among 108 

meteorological operational practices for QPF and hydrological needs in terms of inconsistent 109 

spatial and temporal resolution, approaches to bias correction and model output statistics (MOS), 110 

and distinct points of view regarding validation and uncertainty (Demeritt et al., 2013; 111 

Pappenberger et al., 2008; Shrestha et al., 2013). One advantage of the IPHEx operational 112 

hydrological forecasting testbed is the seamless transfer of NWP QPF to the hydrological model 113 

due to careful a priori planning and integration of the NU-WRF (NASA-Unified Weather 114 

Research and Forecasting) and DCHM model requirements.   115 

2) Data Support - Many campaigns, projects, and community workshops have been 116 

devoted to improving the state-of-the-science and the state-of-the-practice of flood forecasting 117 

(Amengual et al., 2008; Benoit et al., 2003; Davolio et al., 2009; Rotach et al., 2012; Schaake et 118 

al., 2007; Zappa et al., 2008). Often, however, access to observing systems and data delivery 119 

infrastructure, that is the data support, is lacking or remiss in terms of spatial and temporal 120 

sampling density and extent, data quality and latency (Pagano et al., (2014).  The IPHEx testbed 121 

was implemented in an environment with unique data support: 1) an extended observation period 122 

(EOP) from October 2013 through October 2014 including the deployment of a science-grade 123 
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raingauge network of 60 stations (in place since 2007), half of which are equipped with multiple 124 

raingauge platforms (during the IPHEx EOP, 2013-2014), in addition to the fixed regional 125 

observing system including a disdrometer network consisting of twenty separate clusters, and 126 

two mobile profiling facilities including MRRs (Micro Rain Radar); and 2) an Intense Observing 127 

Period (IOP) from May-June of 2014 (IPHEx-IOP) focusing on 4D mapping of precipitation 128 

structure during which NASA’s NPOL S-band scanning dual-polarization radar, the dual-129 

frequency Ka-Ku, dual polarimetric, Doppler radar (D3R), four additional MRRs, and the 130 

NOAA X-band dual polarized (NOXP) radar were deployed in addition to the long-term fixed 131 

instrumentation (Barros et al. 2014). Like-minded field  campaigns, such as HyMeX 132 

(Hydrological cycle in the Mediterranean Experiments)(Drobinski et al., 2014; Ducrocq et al., 133 

2014; Ferretti et al., 2014) and IFLOODS (Iowa Flood Studies) (Petersen and Krajewski, 2013), 134 

focused on improving QPE for flood forecasting. The real-time ensemble hydrological 135 

forecasting were conducted during the Special Observing Period of HyMex paying special 136 

attention to uncertainties associated with QPF and its propagating along the hydrometeorological 137 

chain and meanwhile advocating the consideration of uncertainties associated with initial soil 138 

moisture and hydrological models as well1(Vincendon et al., 2014) .  During the IPHEx-IOP, all 139 

the data from deployed instruments, along with real-time discharge observations and the 140 

operational radar-based QPE products (i.e. NSSL Q3 and NCEP/EMC Stage IV; see Section 141 

2.2.2. for detailed description) were assembled together for operational hydrological forecasting 142 

for the first time, and for synthesis and analysis a posteriori. 143 

 3) Data Assimilation – Even with the “perfect” hydrologic model and an “optimal” 144 

combination of QPFs, QPEs and other data support, flood predictability depends heavily on the 145 

                                                 
1 http://presentations.copernicus.org/EMS2014-461_presentation.pdf 
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realistic representation of  initial hydrological conditions (Berthet et al., 2009; Li et al., 2009; 146 

Pagano et al., 2014). Data assimilation has proven an effective technique to reduce error and 147 

uncertainty in initial conditions (as well as accounting for model errors) in flood forecasting 148 

(Castaings et al., 2009; Komma et al., 2008; Madsen and Skotner, 2005; Noh et al., 2014; 149 

Randrianasolo et al., 2014; Salamon and Feyen, 2009; Schaake et al., 2007; Vrugt et al., 2006; 150 

Wanders et al., 2014;  among others), and in particular by assimilating available discharge 151 

observations into hydrologic models (Bloschl et al., 2008; Clark et al., 2008; Lee et al., 2011; Li 152 

et al., 2015; Li et al., 2014; Rakovec et al., 2012; Seo et al., 2003). However, the application of 153 

data assimilation techniques to fully-distributed hydrologic models is still relatively rare due to 154 

high nonlinearity and the large number of hydrological states (number of degrees of freedom) 155 

involved (Lee et al., 2011; McLaughlin, 2002; Xie and Zhang, 2010), and the complex 156 

implementation that requires correctly representing tempo-spatial uncertainty in forcing, model 157 

parameters and structures, and observations as well (Clark et al., 2008; Crow and Reichle, 2008; 158 

Crow and Van Loon, 2006; Flores et al., 2010; Noh et al., 2014; Ryu et al., 2009). Consequently, 159 

a small number of studies are reported in the literature for real-world events (many are synthetic 160 

studies), and even fewer for realistic operational flood forecasting (Liu et al., 2012; Rakovec et 161 

al., 2015; Randrianasolo et al., 2014).  In this work, the impact of coupling the DCHM with a 162 

river discharge DAS on the quality of both streamflow hindcasts and forecasts was examined in 163 

the post-IOP phase of IPHEx. DAS experiments were conducted for different watersheds by 164 

assimilating the discharge observations at the basin outlet using various techniques including the 165 

EnKF (Ensemble Kalman Filter) (Evensen, 1994; Evensen, 2003), the fixed-lag EnKS 166 

(Ensemble Kalman Smoother) (Evensen and van Leeuwen, 2000) and  asynchronous version of 167 

EnKF (AEnKF) (Rakovec et al., 2015; Sakov et al., 2010). The testbed performance sensitivity   168 
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to the DAS configuration with regard to length of assimilation time windows (TW) and 169 

assimilation frequency (AF) was also investigated for different basins.  170 

This manuscript first describes the operational hydrological forecast activities during the 171 

IPHEx-IOP in Section 2, and summarizes the real-time operational results during the campaign 172 

in Section 3.  Post-IOP analysis and synthesis, including the impact of implementation of data-173 

assimilation are presented in Section 4 with a focus on demonstrating the utility and added value 174 

of the proposed strategies for improving flood forecasting in regions of complex terrain. 175 

 176 

2. Operational Hydrological Forecast Implementation 177 

2.1 Workflow of the Daily Operational Forecast 178 

IPHEx was the first Ground Validation field campaign conducted in support of the 179 

Global Precipitation Measurement (GPM) satellite mission after the launch of the core satellite 180 

(Barros et al. 2014). The main objective was to characterize warm season orographic 181 

precipitation regimes, the relationships among precipitation regimes and hydrologic processes, 182 

and to investigate operational flashflood predictability in regions of complex terrain. The study 183 

region is centered in the Southern Appalachians and spans the Piedmont and Coastal Plain 184 

regions of North Carolina (Figure 1), with a focus on 12 headwater basins in the Southern 185 

Appalachian Mountains (SAM) with drainage areas ranging from 71km2 to 520 km2 (Table 1).  186 

The operational hydrological forecasting testbed during the IPHEx-IOP was conducted 187 

collaboratively by Duke University (Duke) and NASA GSFC (Goddard Space Flight Center) to 188 

issue 24-hour forecasts daily starting at 12:00 UTC for each one of the 12 headwater basins.  In 189 

practice, latency in the operational environment was constrained by computational resources and 190 
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the rates of data transfer from weather prediction at GSFC to hydrological prediction at Duke, 191 

and thus the actual forecast lead time did not exceed six hours during the IOP.   192 

Figure 2 depicts the operational workflow at Duke University to produce the daily 193 

hydrological forecasts and hindcasts during the IPHEx-IOP (Barros et al. 2014). Specifically, 24-194 

hr forecasts provided by the NU-WRF model at GSFC were delivered to Duke daily around 195 

8AM EDT.  The forecast fields were then projected into the IPHEx grid system (UTM17N) at 196 

1km spatial resolution, interpolated to 5-min time-steps, and then converted into the format 197 

required by the input interface of DCHM.  Multiple QPEs including Stage IV and Q3 for the 198 

previous day were downloaded and processed on a daily basis to produce streamflow hindcasts 199 

and provide updated initial conditions for the present day forecast.  The hindcast results were 200 

evaluated for the 12 forecast points using previous day discharge observations downloaded daily 201 

from the USGS (United States Geological Survey) online data portal.  In addition, the discharge 202 

observations at the end of the previous day were nudged into the DCHM as the initial discharge 203 

for the current day forecast, and the initial flow rates in channel pixels within each basin were 204 

adjusted proportionally to the ratio of estimated streamflow to the observation at basin outlet.  205 

The operational modeling system was implemented using MPICH2 (Message Passing Interface) 206 

so that the operational forecast results, including streamflow forecasts for the present day and the 207 

streamflow hindcasts for the previous day, could be produced every day before 3PM EDT.  Note 208 

the operational system here was designed as such to mimic the timeline and overall framework 209 

of the operational forecasting system at the National Weather Service River Forecast Centers 210 

(RFCs), but actual public forecasts were not issued although it could be and results were posted 211 

online at iphex.pratt.duke.edu. The ultimate goal of this study is to enhance the hydrological 212 
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forecasting skills through various strategies with minimum manual supervision and rescue as 213 

needed in realistic operational systems. 214 

 215 

2.2 Hydrometeorological Forcing Fields  216 

2.2.1 Quantitative Precipitation Forecasts (QPFs) and other atmospheric forecasts  217 

During the IPHEx-IOP, the NU-WRF operationally provided high-resolution 2D 218 

forecasts of atmospheric forcing to drive the DCHM, including QPFs, air temperature at 2m, air 219 

pressure at 2m, specific humidity at 2m, and wind speed at 10m, incoming shortwave radiation 220 

and incoming longwave radiation at surface. The NU-WRF was implemented with 60 vertical 221 

layers and three horizontal domains at resolutions at 9km (domain 1), 3km (domain 2), 1km 222 

(domain 3) and 30sec temporal resolution.  The model precipitation and atmospheric forcing 223 

fields were output at 1km resolution and 5min intervals. Figure 3 shows the three horizontal 224 

nested grids implemented in NU-WRF and the IPHEx domain. The NU-WRF physics 225 

configuration include the Goddard 4-ice Microphysics scheme, the Grell-Devenyi ensemble 226 

cumulus scheme, the Goddard Radiation schemes, the MYJ (Mellor–Yamada–Janjic) planetary 227 

boundary layer scheme, the Noah surface scheme and the Eta surface layer scheme. The output 228 

from the GFS (Global Forecast System) model every six hours at 0.5o resolution were used as 229 

initial and boundary conditions for the NU-WRF forecasts. More information about the NU-230 

WRF can be found in (Matsui et al., 2014; Peters-Lidard et al., 2015; Shi et al., 2014; Zaitchik et 231 

al., 2013). 232 

 233 
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2.2.2 Quantitative Precipitation Estimates (QPEs) 234 

During the campaign, two conventional ground-radar QPEs were used for operational 235 

hindcasts, namely Stage IV and Q3 data. An experimental ground-radar based QPE derived from 236 

the NOAA NSSL (National Severe Storms Laboratory) X-band dual-Polarized Mobile Radar 237 

(NOXP), and a satellite-based QPE, i.e. the NASA Integrated Multi-satellitE Retrievals for 238 

GPM (IMERG), were also utilized for case studies after the IPHEx IOP. During the IOP, the 239 

operational QPEs (i.e. Stage IV and Q3) for the previous day were downloaded first, and then 240 

were (re-) projected to the IPHEx reference gridding system (i.e. UTM17 at WGS84). Q3 QPEs 241 

were resampled to the IPHEx common grid at 1km using the nearest neighboring method.  Stage 242 

IV data were downscaled to 1km using a transient multi-fractal downscaling method (Nogueira 243 

and Barros, 2014). Details about each QPE are provided below.  244 

a) Stage IV (Operational Radar-based QPE) - NCEP/EMC (Environmental Modeling 245 

Center) Stage IV data is a national multi-sensor 4km gridded hourly precipitation analysis with 246 

very short latency (about 1hour) (Lin and Mitchell, 2005). The Stage IV product is constantly 247 

updated with new analyses from the RFCs (River Forecast Centers), and the final product is 248 

available with a latency of 12~18 hours. 249 

b) Q3 (Operational Radar-based QPE) - The Q3 or MRMS (Multi-Radar/Multi-Sensor) 250 

product provided by the National Mosaic and Multi-sensor QPE (NMQ) system at NSSL is a 251 

real-time nation-wide seamless QPE product at very high spatial (~1 km) and temporal (2 min) 252 

resolution which ingests rain gauge observations and hourly analyses of RAP (Rapid Refresh 253 

model) on the basis of 3D volume scan data from Weather Surveillance Radar-1988 Doppler 254 

(WSR-88D) network (Zhang et al., 2014). During the IPHEx-IOP, the hourly radar-based 255 

product with bias correction was operationally used for hindcasts. The 2-min radar-alone 256 
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products without gauge correction were also obtained after the campaign and used for analysis. 257 

The Q3 is a real-time product, and thus its latency is on the order of minutes.  258 

c) NOXP (Experimental Radar-based QPE) - The NOXP radar was deployed in the 259 

Pigeon River Basin (shown in Figure 1) during the IPHEx-IOP (Barros et al. 2014). The radar 260 

was installed at intermediate elevation (1176m) in the inner region, and operated with scanning 261 

frequency of about 5 minutes and multiple sweeping elevation angles (from 0.5 to 8 degree), 262 

which allows an unimpeded view for low-level across most of the inner basin to avoid terrain 263 

blockage and overshooting, which are severe problems impeding the applications of 264 

conventional weather radars in topographically complex terrain. Details about the NOXP radar 265 

can be found in  Palmer et al. (2009).  Hybrid gridded NOXP data were produced by choosing 266 

the lowest elevation angle without terrain blocking for each azimuth. The processed NOXP data 267 

were gridded into UTM17 directly at the DCHM simulation resolution (i.e. 250m×250m) from 268 

the radar-scanning spherical polar coordinate system. The algorithm components used in the 269 

NOXP data processing (i.e. calibration, ground clutter removal, attenuation correction, DSD 270 

retrieval, and QPEs, etc.) are described in (Anagnostou et al., 2013; Kalogiros et al., 2013a; 271 

Kalogiros et al., 2013b; Kalogiros et al., 2014).  272 

d) IMERG (Experimental Satellite-based QPE) - The IMERG Level 3 half-hour 273 

precipitation products at 0.1o x 0.1o (Final Run) were used for the case studies in the post-IOP 274 

phase of the campaign. The IMERG system integrates prior multi-satellite algorithms from 275 

TMPA (TRMM Multi-Satellite Precipitation Analysis), CMORPH-KF (CPC Morphing – 276 

Kalman Filter), and PERSIANN-CCS (Precipitation Estimation from Remotely Sensed 277 

Information using Artificial Neural Networks – Cloud Classification System) (Huffman, 2015). 278 

Specific details regarding the rainfall retrieval algorithm and the data (post)processing are 279 
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described in the Algorithm Theoretical Basis Document of IMERG (Huffman et al., 2014). 280 

Similar to StageIV, the IMERG data were also downscaled to 1km using the fractal downscaling 281 

method (Nogueira and Barros, 2014a and 2015).  282 

 283 

2.2.3 Soil properties and historical hydrometeorological datasets 284 

In preparation for the operational hydrological forecasting testbed, long-term historical 285 

hydrometeorological datasets (atmospheric forcing and landscape attributes) necessary to 286 

implement and operate hydrologic models in the Southeast US (shown in Figure 1a) at the 287 

IPHEx reference resolution (hourly time-step, 1km×1km in UTM17N at WGS84) were 288 

developed for a 7-year period (2007-2013), and are available on http://iphex.pratt.duke.edu. The 289 

atmospheric forcing fields were downscaled from the North American Regional Reanalysis 290 

(NARR) product with cloudiness-, elevation- and topographic correction (Tao and Barros, 291 

2014c). The landscape attributes were constructed from MODIS land products by removing 292 

cloud contamination (Tao and Barros, 2014b). Soil properties, including saturated hydraulic 293 

conductivity, porosity, field capacity and wilting point, were extracted from the State Soil 294 

Geographic (STATSGO) dataset2. Historical landscape attributes in the same day-of-year in a 295 

wet year (2009) were used throughout the entire IPHEx-IOP period due to the lack of updated 296 

MODIS products. 297 

 298 

                                                 
2 http://iphex.pratt.duke.edu/DataCenter/Time-invariantDatasets/SoilParameters 
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2.3 Duke Coupled surface-groundwater Hydrology Model (DCHM)  299 

The DCHM, implemented at 250m×250m spatial and 5min temporal resolution, was the 300 

hydrologic model used for the operational hydrologic forecasting testbed. The DCHM is a 301 

physically-based and fully-distributed hydrologic model solving water and energy balance 302 

equations with coupled surface-subsurface interactions. Earlier studies using evolving versions 303 

of the DCHM (formerly referred to as LSEBM, 1D-LSHM, and 3D-LSHM) were described in 304 

various publications (Barros, 1995; Devonec and Barros, 2002; Garcia-Quijano and Barros, 305 

2005; Gebremichael and Barros, 2006; Kang et al., 2013; 2012a; 2012b; Tao and Barros, 2014a; 306 

2013; Yildiz and Barros, 2005; 2007; 2009) with demonstrated success particularly in flash-flood 307 

and landslide prediction at event scale in the Pigeon River Basin (one of the core basins in this 308 

study) (Tao and Barros, 2014a; Tao and Barros, 2013).  Before the IPHEx-IOP, the DCHM was 309 

reinitialized and spun up (repeating simulations several times until internal equilibrium is 310 

reached) for five weeks (April 1-May 5, 2014) driven by the ensemble of fractally downscaled 311 

QPEs generated from the Stage IV product and historical hydrometeorological datasets in the 312 

same month of a wet year (2009). Spin-up was conducted repeatedly until the flow difference 313 

between the last and the current iteration is very small, i.e. the hydrologic system reaches internal 314 

equilibrium, resulting in small stable simulated streamflow residuals. The final hydrologic states 315 

at the end of the spin-up period were used as the initial conditions for the operational forecasts 316 

starting on May 5. Note there was no tuning of initial conditions for the daily forecasts past May 317 

5, and the model is uncalibrated. 318 

The spatial and temporal resolutions of standard IPHEx products including NU-WRF 319 

forecasts are respectively 1km and hourly.  All the forcing data were spatially interpolated to 320 

250m using the nearest neighbour method, and landscape attributes data were linearly temporally 321 
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interpolated to 5min resolution. During the IOP, operational hourly QPEs (i.e. StageIV and Q3) 322 

and 30min satellite-based QPE data (i.e. IMERG) were uniformly interpolated to 5min assuming 323 

constant rainfall intensity, thus generally underestimating heavy rainfall intensities and 324 

overestimating light rainfall (Nogueira and Barros, 2015) at times. NOXP QPEs (rainfall rate) at 325 

radar scanning temporal resolution were averaged to 5min. Temporal interpolation of 326 

atmospheric forcing fields including QPFs provided by NU-WRF was unnecessary since all the 327 

fields were available at 5min resolution.  328 

 329 

3. Operational Results during the IPHEx-IOP 330 

3.1 Overview of the Operational Hydrologic Forecasting Testbed 331 

The overall forecast and hindcast results for selected headwater basins during the IPHEx-332 

IOP period (May 1 – June 15, 2014) are summarized in Figure 4. The QPFs provided by NU-333 

WRF overestimate rainfall for all twelve basins during the campaign, consequently 334 

overestimating streamflow but capturing well peak times for all basins.  There were no missed 335 

events, though several false alarms resulted from incorrect placement of rainfall cells in NU-336 

WRF QPFs (e.g. Basin 1 and 10).  The overestimation error is particularly large for the major 337 

IOP event on May 15 in all basins, and for the secondary event on June 12/13 in the headwater 338 

catchments of the Upper Catawba and Upper Yadkin (i.e. Basins 8-12, not shown here but can be 339 

found on IPHEx website3). Some extraordinary flow forecasts (false alarms) are shown for May 340 

30 in Basin 1, and on June 1 in Basins 4 and 5 which are attributed to the incorrect placement of 341 

rain cells predicted in NU-WRF. 342 

                                                 
3 http://iphex.pratt.duke.edu/ 
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The hindcast results (here only results using Q3/MRMS are shown due to similarity with 343 

results using Stage IV) show generally improved performance compared to forecasts for most of 344 

the basins except Basin 10 (Fig. 5)  and two small headwater catchments in the Upper Yadkin 345 

(i.e. Basins11 and 12, not shown) for the May 15 event. The good forecast performance on May 346 

15 in Basin10 demonstrates the importance of the accuracy of the QPF forcing: given high 347 

quality QPFs, the hydrologic forecasts using the uncalibrated DCHM are very good such as on 348 

May 15;  by contrast, note the false alarm on June 13 in the same basin given overestimated 349 

QPFs compared with observations on June 12.  350 

It should be stressed that the initial streamflow in each basin for the current day forecast 351 

was simply based on the discharge observation at the basin outlet at the time of forecast, i.e. 352 

discharge observations were nudged into the DCHM for each basin outlet and proportionally 353 

estimated flow redistributed through the basin’s channel network according to the ratio of 354 

predicted to the observed streamflow at the basin outlet (as described earlier, see workflow in 355 

Fig. 2). However, nudging discharge observations at the basin outlet directly into the model 356 

could only affect the model states directly tied to river water stage and for a certain (short) period 357 

of time as antecedent soil moisture conditions control rainfall-runoff response, as illustrated by 358 

the shift in the streamflow curve at the beginning of each day in Figure 4.   This problem can be 359 

alleviated by assimilating discharge observations into the DCHM to systematically 360 

update/improve soil moisture within the basin.  This is further discussed in section 4.3. 361 

 362 

3.2 Case study with multiple QPEs  363 

The largest region-wide rainfall event on May 15 with large streamflow response in all 12 364 

basins during the IPHEx-IOP is examined closely. A second event, a localized rainfall event on 365 
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June 12 which caused streamflow response in Basin 2 next day (June 13), is not shown here. 366 

Figure 5 shows daily rainfall accumulations on May 15 from multiple QPEs (including Stage IV, 367 

Q3 and also IMERG) and QPFs from NU-WRF. It can be seen from the figure that Stage IV and 368 

Q3 show very similar storm patterns although Q3 patters exhibit sharper spatial variability due to 369 

higher resolution. The IMERG data exhibit spatial variability consistent with Stage IV and Q3 at 370 

coarse resolution (~10km; e.g. Nogueira and Barros, 2015), but much heavier rainfall for the 371 

event in question. That is, the overestimation is preserved by the downscaled product. Moreover, 372 

the spatial patterns of NU-WRF QPF do not agree with the QPEs with much larger rainfall 373 

accumulations compared to Stage IV and Q3, thus causing significant streamflow overestimation 374 

as pointed out earlier. Hindcast results using Stage IV are larger than those using Q3 except for 375 

Basins 3 and 5, where both products are similar (Figure 5).  This is illustrated in Figure 6 which 376 

exclusively shows daily simulation results for May 15, including hindcasts driven by both 377 

StageIV and Q3, as well as the forecasts initialized using the two hindcasts.  The initial 378 

conditions for the forecasts or the final states between the two hindcasts for the previous day are 379 

very close, consequently leading to very similar performance except for Basin 1. The similarity 380 

is explained by the antecedent conditions, specifically a dry period of about two weeks with little 381 

antecedent rainfall as indicated in Figure 4, during which the evolution of soil moisture states 382 

was controlled by evapotranspiration and deep percolation, and thus antecedent conditions were 383 

not affected by Stage IV or Q3. The exception in Basin 1 is caused by discrepancy of rainfall on 384 

May 13 between Stage IV and Q3 (not shown here), which leads to large differences in initial 385 

conditions for the May 15 event forecast.   386 

Figure 7 shows the rainfall accumulation on May 15 from NOXP with two elevation 387 

angles at 1.8o and 2.4o, and the hybrid data obtained by merging quality observation from various 388 



 

19 
 

elevation angles. Even though the NOXP was installed at high elevation (as shown in Figure 1) 389 

to minimize topographic blocking, the impact of the typical challenges of ground-based radar 390 

sensing in mountainous regions, including overshooting, blockage and ground clutter, are 391 

apparent in Fig. 8. An overview of hindcast results in the Pigeon River Basin on May 15 using 392 

the NOXP data, as well as the NU-WRF QPF and other ground radar-based QPEs including 393 

StageIV and Q3, and satellite-based IMERG data, are presented in Fig. 9. Both IMERG and NU-394 

WRF overestimate the rainfall on May 15, thus leading to larger streamflow response.  395 

Simulations forced by NOXP QPEs largely underestimate streamflow for all the three small 396 

basins in the Pigeon (Basins 1, 2 and 3) due to terrain blocking as stated earlier. 397 

  A posteriori analysis of hydrologic forecasts and hindcasts indicates that, despite the 398 

unusual high density and unique combination of IPHEx observations in this region, “true” 399 

rainfall during the IOP remains elusive at this time, though ongoing and future studies will 400 

reduce uncertainty through physically-based comprehensive integration of the full suite of 401 

IPHEx observations not yet available (Barros et al. 2014).  However, with multiple QPEs and 402 

QPFs in hand, a distribution of streamflow simulations can be assembled, the spread of which 403 

explicitly represents the propagation of rainfall uncertainty to the hydrologic forecast, or in other 404 

words the model’s sensitivity to rainfall uncertainty which is essential for quantifying the 405 

probability of flood occurrence.  A significant effort was devoted to explore alternative strategies 406 

to improve the flood forecasts and hindcasts in the post-IOP phase of IPHEx including better 407 

QPF and QPE accuracy, and assimilation of discharge at the forecast points.   408 

 409 
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4. Improving Results – Meet the challenge 410 

4.1 Improving forecasts by enhancing QPFs  411 

The NU-WRF ensemble data assimilation system was developed with a focus on 412 

assimilating satellite precipitation-affected radiances into NU-WRF. The system uses an all-sky 413 

radiative transfer algorithm to connect the observed microwave radiances with the forecast 414 

model states. The analysis control variables are wind, temperature, surface pressure, water vapor 415 

and five hydrometeors including frozen and liquid phases.  An ensemble of NU-WRF model 416 

forecasts are used to calculate state-dependent background error covariance (Zhang et al., 2013; 417 

Zupanski et al., 2011).  The GPM (Global Precipitation Measurement satellite mission, Matsui et 418 

al., 2013)  core observatory launched in February 2014 has an orbit extended to higher latitudes 419 

(65°) to provide broader spatial coverage (Hou et al. 2014). The microwave imager on board 420 

GPM (GMI, Global Microwave Imager) has thirteen microwave channels ranging in frequency 421 

from 10 GHz to 183 GHz. There were two overpasses of the GPM core observatory during the 422 

May 15 event, providing passive microwave observations of the storm precipitation process from 423 

space.   To take advantage of these two overpasses, a data assimilation experiment was 424 

conducted to assimilate GPM data into NU-WRF, specifically GPM core and constellation cross-425 

calibrated level-1C data from GMI and SSMIS (Special Sensor Microwave Imager/Sounder), 426 

aiming at improving the NU-WRF QPF. 427 

The experiment consists of 32 ensemble forecasts and the assimilation cycling is initiated 428 

by GFS (Global Forecast System, http://www.emc.ncep.noaa.gov) global analysis at 15UTC 429 

May 14, 2014.  The assimilation time window is 3 hours. Observations that are available in each 430 

assimilation time window are submitted to pass quality control, and a subset of the data are used 431 

in the analysis. Two runs were carried out for the cycling period from 15UTC May 14 to 00UTC 432 
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May 16, 2014. The first run assimilates ground-based conventional data from the NCEP 433 

(National Center for Environmental Prediction) data stream including wind, temperature and 434 

moisture (denoted as DA-CNT). The second run assimilates GMI and SSMIS (Special Sensor 435 

Microwave Imager/Sounder) precipitation-affected microwave radiances at frequencies 89, 166 436 

and 183+/-7 GHz (denoted as DA-SAT). The analysis is solved in the outer domain at 9km 437 

resolution, and results are dynamically downscaled to 1km resolution via model simulations in 438 

the inner domain. Because of prohibitive high computational expense of using large high-439 

resolution domains in ensemble data assimilation cycling, the areal extent of the model domain 440 

configuration in these runs is about half of the size of the NU-WRF operational forecast run 441 

depicted in Figure 2, and with 31 vertical levels instead of 61 to strike a balance between 442 

desirable domain size and vertical resolution and computational costs. The Goddard 3ICE 443 

microphysics scheme is applied in model state propagation and in precipitation-affected radiance 444 

simulation.   445 

The daily accumulations of QPFs from the two assimilation experiments on May 15, 446 

2014 are displayed in Figure 5. Comparing to Q3 data and the operational NU-WRF forecast, the 447 

storm front traveled rapidly eastward in the control run DA-CNT, resulting in a significant 448 

displacement of the spatial QPF pattern. The assimilation run DA-SAT shows improved spatial 449 

rainfall patterns and position relative to the control run, but fails to correct the storm cumulative 450 

precipitation. The heaviest rain cell is much closer to the actual location as shown in Q3, though 451 

with slightly deviated position, i.e. the Q3 displays the heaviest rainfall over the southeast ridge 452 

lines of the Upper French Broad River basin, while the heaviest rain cell in the NU-WRF QPF 453 

with DA-SAT is on the west ridge lines reaching into the Pigeon River Basin. The flood 454 

forecasting results using the two QPFs are provided in Figure 9. Comparing to the streamflow 455 
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observations and operational forecast-driven results, the QPFs from DA-SAT lead to excessively 456 

high streamflow response in the three small headwater catchments of the Pigeon River (Basins 1, 457 

2 and 3), while the QPFs from DA-CNT generate much lower streamflow response in the two 458 

basins on the eastern slopes of the Appalachians (Basins 2 and 3).  In the inner mountain region, 459 

where orographic modulation of precipitation takes place at the ridge-valley scale, the QPFs are 460 

too high thus leading to excessive streamflow in Basin 1. These results show that despite clear 461 

improvement of the NU-WRF storm forecast with the assimilation of satellite data correcting the 462 

storm path and the overall spatial pattern of precipitation as shown by the difference between the 463 

accumulated QPFs of DA-CNT and DA-SAT, the improvement takes place at the mesoscale, and 464 

thus it’s not sufficient to improve the QPF at the headwater catchment scale.  This calls for 465 

investigating further refinements in the dynamical downscaling design NU-WRF model 466 

configuration and spin-up, and error characterization (e.g. bias) in the radiance assimilation 467 

scheme. In this case, the streamflow observations provided valuable verification for satellite data 468 

assimilation in hydrological applications, which can serve as a reference point to improve the 469 

bias correction in assimilation algorithms and ensemble forecasts.  Finally, because the DA of 470 

microwave radiances introduced such a dramatic correction on the position and pattern of the 471 

storm, there is also an opportunity to investigate physical-statistical downscaling approaches 472 

(e.g. Nogueira and Barros, 2014b)  to leverage the benefits at the mesoscale by improving the 473 

representation of moist processes at the cloud-resolving scale that is critical to resolve the 474 

individual storm cells that determine streamflow (and flash-flood) response  in mountainous 475 

regions.   476 

 477 



 

23 
 

4.2 Improving hindcasts by enhancing QPEs  478 

Previous work has demonstrated success using raingauge observations to characterize 479 

errors and uncertainties in QPEs, and then to adjust the QPEs leading to significant 480 

improvements in streamflow simulations (Tao and Barros, 2014a; Tao and Barros, 2013).  The 481 

same approach was followed to improve the Q3 data. Specifically, the Q3 data were first 482 

compared against rainfall observations from the dense raingauge network comprising NASA 483 

dual-platform gauges, Duke PMM gauges, HADS and ECONet gauges as shown in Figure 1c,  484 

and then were adjusted at hourly time steps by linear regression between the Q3 and gauge 485 

observations. Figure 10 shows the comparison between the rainfall observations and the Q3 data, 486 

as well as the adjusted Q3 data (noted as Q3+) by three adjusting methods, namely Q3+_All 487 

based on the linear regression model derived using all the raingauge observations, Q3+_H/L 488 

separating adjustments for high elevation from low elevation as described in Tao and Barros 489 

(2013), and Q3+_CdfThr separating heavy rainfall domain from non-heavy rainfall domain using 490 

a threshold at 0.9 CDF (cumulative distribution function) derived from raingauge observations 491 

(Lin et al., 2015). As it can be seen from the figure, the accuracy of Q3+ is improved with 492 

reduced RMSE compared to the original Q3 data, and with relative larger storm rainfall 493 

accumulations although differences among the three gauge-corrected Q3+ data sets are small. 494 

The adjustments also include value-added information on spatial variability as illustrated by the 495 

contrasts between the cumulative rainfall patterns from the original Q3 and the Q3+ data on May 496 

15 (Figure 11).  Basin 2 streamflow hindcasts using Q3+ are higher and in  better aggrement with 497 

observations, but streamflow is overestimated in Basins 1 and 3 (Figure 12). This highlights the 498 

difficulty in capturing small-scale precipitation variability using empirical (data-driven) 499 

raingauge correction methods. The number and distribution of gauges is limited in Basin 3 due to 500 
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the fact that it was not possible to obtain gauge installation permits in the Pisgah National Forest.  501 

Moreover, in retrospect, the number of raingauges at mid and low elevations in Basin 1 is 502 

insufficient reflecting low awareness of the dominant role of low level orographic rainfall 503 

enhancement processes such as seeder-feeder interactions (Wilson and Barros, 2014; Wilson and 504 

Barros, 2015) in the design of the raingauge network at the time (2007) when it was first 505 

deployed (Prat and Barros, 2010). Consequently, the complexity of orographic modulation of 506 

precipitation processes in the SAM is not fully captured at the ridge-valley scale.  507 

One of the merits of the simple linear regression adjustment is that the uncertainty 508 

associated with Q3 data can be explicitely represented for each pixel at each time step assuming 509 

that the uncertainty is normally distributed with the mean as the ‘optimum’ Q3+ data and 510 

standard deviation based on a selected confidence interval (CI) of the regression model, hence 511 

providing an unambiguous straightforward framework to specify temporal and spatial error 512 

structures in rainfall. The grey lines in Figure 12 depict the streamflow hindcasts spread for 50 513 

rainfall replicates drawn from the normal distribution within 70%CI and 95%CI based on the 514 

derived regression models for Q3+_All as an example. Note that, even though the QPF from 515 

NU-WRF substantially overestimates rainfall, the estimated streamflow is still within the 95%CI 516 

envelope, but outside or at the edge of the 70%CI envelope, except for the flow peaks. This 517 

implies that all the uncertainty and errors associated with (and not only in) rainfall forcing, but 518 

also in initial conditions, model structure and model parameters interact nonlinearly and are 519 

propagated and integrated over time leading to the large bias in simulation results.  To counteract 520 

the compounded effect of error propagataion and model memory on uncertainty build-up, 521 

physically-based merging of discharge observations and model forecasts is explored next using 522 

data-assimilation techniques.  523 
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 524 

4.3 Improving forecast/hindcast by assimilating discharge observations  525 

4.3.1 Implementation 526 

To investigate the value of data assimilation (DA) in aiding operational flood forecasts, 527 

discharge observations at the basin outlet are assimilated into the DCHM to systematically 528 

reduce uncertainty and errors in estimated soil moisture within the basin and thus produce better 529 

initial conditions for streamflow forecasting generally and flood forecasting in particular. Three 530 

data-assimilation systems (DAS, see the Appendix for detailed mathematical formulation), 531 

specifically the Ensemble Kalman Filter (EnKF), the fixed-lag Ensemble Kalman Smoother 532 

(EnKS) and the Asynchronous Ensemble Kalman Filter (AEnKF) are tested here. Two models 533 

are involved in data assimilation, including a state equation or an input-to-state forward model 534 

which propagates hydrological states in time (i.e. the Eq. (1) in the Appendix), and a state-to-535 

output observations operator that relates states to observations (i.e. the Eq. (2) in the Appendix). 536 

In this study, the state vector consists of control variables including soil moisture from the top 537 

three model soil layers (top, middle and deep layer) at all pixels within the basin. The assimilated 538 

observations are the discharge at basin outlets when they become available.  Furthermore, to 539 

evaluate a broad range of potential operational data-assimilation architectures, the DAS are 540 

implemented in different configurations with regard to assimilation frequency (AF: 15, 30 and 60 541 

minutes) and assimilation time window (TW: 1, 2, and 3 hours), as summarized in Table 2.  In 542 

the EnKF and EnKS DAS, only the current discharge observations are assimilated, while in the 543 

AEnKF all the available discharge observations within the TW are assimilated. 544 

When assimilating discharge into a distributed hydrologic model that simulates the space-545 

time evolution of rainfall-runoff response processes, there is a time-lag between the basin 546 
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internal states at local places (i.e. soil moisture) and the discharge at the basin outlet reflecting 547 

the trajectory and travel time of a control volume of runoff (surface or subsurface) from any 548 

generic location within the basin to the outlet. The EnKF assimilates the current observation to 549 

correct/update the current hydrological states; thus, it does not account for the response delay at 550 

the outlet.  The AEnKF is equivalent to a 4D-Var (Four-Dimensional Variational) method but 551 

does not need a tangent linear or adjoint model (Sakov et al., 2010), and it accounts for 552 

discrepancies among past model predictions and observations also at times different from the 553 

assimilation time within the specified TW. The EnKS implemented in this work uses the current 554 

observations to correct the antecedent states in the past, propagating information back in time 555 

and space to account for the time-lag explicitly, thus effectively re-initializing the model to 556 

propagate the updated past states forward to current time. Both the EnKS and AEnKF are 557 

asynchronous KF-based (Kalman Filter) algorithms with documented success in improving the 558 

representation of the impact of the time-lag in rainfall-runoff response at the outlet on 559 

streamflow simulations (Li et al., 2015; Li et al., 2013; Li et al., 2014; Rakovec et al., 2015; 560 

Sakov et al., 2010).   561 

To generate the model ensembles, stochastic perturbations were applied to atmospheric 562 

forcing fields provided by NU-WRF, soil parameters and discharge observations in order to 563 

account for associated uncertainties in model inputs and possible measurement errors. Soil 564 

moisture estimates were also directly perturbed to account for potential errors in the state 565 

forecast model. Table 3 summarizes the methods and parameters applied for each perturbation. 566 

QPFs were perturbed by multiplying a realization drawn from a log-normal distribution. Log-567 

normally distributed multiplicative perturbations were also applied to incoming shortwave 568 

radiation, while normally distributed additive perturbations were applied for other atmospheric 569 
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forcing fields including incoming longwave radiation, air temperature, air pressure, specific 570 

humidity and wind speed. Soil parameters used for calculation of  the unsaturated hydraulic 571 

conductivity (
∅

)(Campbell, 1974), including the saturated hydraulic conductivity 572 

 and the power n=3+2/ in which  is the pore-size index, were perturbed using the normally 573 

distributed additive method also. The perturbation to static soil parameters is applied once before 574 

running the simulations. Spatial soil moisture perturbations were generated by adding normally 575 

distributed noise with zero mean and a standard deviation as 5% of top soil moisture at each time 576 

step (i.e. 5min). At each location, the spatial soil moisture perturbations were transferred to the 577 

top, middle and deep soil layers using relative weights 4:2:1 in an attempt to capture the 578 

differences in DCHM soil layer depth and soil hydraulic properties. For the discharge 579 

observations, the normally distributed additive perturbation was used with a time-varying 580 

standard deviation that is a function of discharge itself, assuming that the uncertainty in 581 

discharge  is much larger at high river-stage levels than at low stage levels (Clark et al., 2008; 582 

Sorooshian and Dracup, 1980).  Landscape properties such as land-cover, emissivity, albedo, etc., 583 

were not perturbed. Finally, hindcasts were simulated using the Q3+_All gauge-corrected QPE 584 

product with uncertainty identified within 95% CI of the adjusting linear regression model as 585 

described in section 4.2. 586 

The workflow of discharge assimilation is mapped in Figure 13. The latency of discharge 587 

observations is 30min~1hour, while the total number of discharge observations assimilated into 588 

the DCHM depends on the assimilation frequency, and also the time window for the AEnKF 589 

(Table 2). Given the uncertainty described above, a number of replicates of the state vector are 590 

propagated in time by the DCHM. At DA time, the true state vector conditioned on observations 591 

can be obtained by updating each replicate (background estimate) using a Kalman Gain (KG) 592 
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matrix   where  is the error cross covariance between state vector 593 

and estimated measurements, and  and  is are error covariance matrices associated with the 594 

predicted measurements (i.e. streamflow estimates) and the observations, respectively. The 595 

calculation of KG is different for each tested DA scheme, i.e. AEnKF calculates the KG by 596 

augmenting the state vector with past streamflow estimates, while the soil moisture in the 597 

calculation of KG for EnKS is at a past time determined by the TW and AF (see details in the 598 

Appendix). EnKS is able to update all states within a TW, but here only the first states within the 599 

TW (i.e. at ) are updated, and next the DCHM propagates the past states from all 600 

ensemble members at ( ) to the current time ( ) again.  The process is repeated iteratively 601 

at the next assimilation time (as shown in the Figure 13).   602 

4.3.2 Analysis of DAS Performance 603 

Assimilation experiments were conducted in the three basins in the Pigeon River Basin 604 

(Basins 1, 2 and 3) for the largest event during the IPHEx-IOP (May 15) only due to the 605 

availability of Q3+_All  rainfall (refer to Section 4.2).   Hindcast results are shown in Figure 14, 606 

organized in four panels to illustrate hindcast results for the various DAS configurations: a) using 607 

the EnKF with different AF, b) using the AEnKF with different AF and TW, c) using the EnKS 608 

with different AF and TW, and d) the three best DAS identified according to the NSE (Nash-609 

Sutcliffe Efficiency) metric as summarized in Table 2. Other evaluation metrics including the 610 

KGE (Kling-Gupta Efficiency) and the modified KGE (Gupta et al., 2009; Kling et al., 2012), 611 

and the errors in the peak flow value (EPV)  and time  (EPT) are also provided. It can be seen 612 

from Figure 14 that the EnKF is not capable of correctly capturing the temporal lag between 613 

basin states and basin-output fluxes during rainfall, because updating soil moisture storage at the 614 

DA time corrects the current discharge but it does not account for the time delay required to 615 
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transfer the joint effects of spatial variability of antecedent soil moisture and rainfall on runoff 616 

generation to the basin outlet.  By contrast, by also assimilating past discharge observations, the 617 

AEnKF produces much better simulations especially in Basins 1 and 3 compared to EnKF. The 618 

simulations with AEnKF are particularly improved for Basin 3 (AF = 15min; TW = 2hrs) with 619 

the NSE, KGE and modified KGE equal to 0.99, 0.94 and 0.96, respectively.  The EnKS DAS 620 

also show better performance than EnKF due to explicitly accounting for the time-lag between 621 

basin internal states and outlet response, attaining an NSE, KGE and modified KGE of 0.98, 0.95 622 

and 0.97 for Basin 1 (AF = 15 min; TW = 2 hrs).   Note that, as pointed out by Tao and Barros 623 

(2013), both Basin 1 and Basin 3 have deep alluvial valleys which naturally slow and smooth 624 

rainfall-runoff response, and thus the hydrological processes are amenable to time integration at 625 

moderate temporal resolution.   The nearly perfect skill achieved for AEnKF and EnKS 626 

configurations is partly attributed to the AF,  i.e. the best performance is achieved by 627 

assimilating as many discharge observations as possible, and thus the optimal AF is equal to the 628 

discharge observation frequency (every 15min) consistent with Wanders et al. (2014). A note of 629 

caution is warranted as KF-based DAS implementations imply that observation errors are serially 630 

independent, an assumption that can be compromised when streamflow observations are very 631 

close together in time.  However, given the large background uncertainty as shown in the Figure 632 

14d) and the small uncertainty associated with observations (std. specified as 10% of the 633 

observations), this is it not likely to be a significant issue for this particular assimilation problem.  634 

Finally, AEnKF displays relatively lower uncertainty (shown by the ensemble spread for Basin 3 635 

in Figure 14d) than EnKS (shown by the ensemble spread for Basins 1 and 2 in Figure 14d) by 636 

assimilating many (past) discharge observations, not just the current one. 637 
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Nevertheless, none of the DAS shows good results for Basin 2, the smallest basin with 638 

drainage area of 71km2, steep slopes and shallow soils.  The Basin 2 simulation with a best NSE 639 

of 0.71 is produced by EnKS with 15min AF and 1hr TW. Although the major peak of the 640 

hydrograph is underestimated and the KGE and the modified KGE are relatively low (0.58 and 641 

0.72, respectively), the peak time error is among the smallest (±30min), which is critical for 642 

flash-flood warning, and thus we still use this scheme (AF = 15min; TW = 1hr) as the best 643 

configuration for Basin 2. Simulations with longer TW, i.e. EnKS_AF15min_TW2hr and 644 

EnKS_AF15min_TW3hr, show comparable or slightly worse NSE results (0.67 and 0.61, 645 

respectively as shown in Table 2) but have significant better KGE, modified KGE and peak 646 

values, albeit with larger errors in time-to-peak (about 1.5 hr). That is, the EnKS updating of 647 

antecedent soil moisture 2hr or 3hr before the assimilation time has a strong impact on the 648 

streamflow at the basin outlet 0.5-1.5 hr later, thus over a shorter time-lag than the TW (2-3hr). 649 

This behavior implies that the weights used to transfer soil moisture perturbations in the different 650 

soil layers are important to determine the simulated hydrograph ensemble spread when the 651 

number of ensemble replicates is limited.  For example, surface runoff and shallow interflow 652 

dominate the rising limb of the hydrograph in Basin 2 (Barros and Tao, 2013) and therefore the 653 

amplitude of soil moisture perturbations in the two top soil layers will determine the spread of 654 

the simulated discharge in this case.  Understanding of rainfall-runoff processes in the context of 655 

basin-specific topography and geomorphology can provide therefore valuable insights in the 656 

practical implementation of ensemble-based DAS.  657 

Previous studies suggest that the time of concentration is a good estimate of the TW for 658 

DA (Li et al., 2013; Rakovec et al., 2015). However, the experiments conducted in the context of 659 

this work suggest that quality DAS is associated with TWs significantly shorter than the time of 660 
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concentration (e.g. about 5hr for the smallest Basin 2, and much larger for Basins 1 and 3).   661 

Indeed, the best performance is attained when the latency of the observations is assumed to be 662 

nearly instantaneous (AF=temporal resolution of the observations), which is possible for these 663 

hindcast simulations, but unrealistic in an operational environment.  It should be emphasized that 664 

for distributed hydrologic models the DAS performance for a particular basin depends not only 665 

on basin geomorphologic features (i.e. topography, elevation, size, etc.) but also on temporal and 666 

spatial rainfall characteristics (i.e. rain cell’s location is close to the basin outlet or not), initial 667 

soil moisture conditions, and their uncertainty.  Although there is no universal DAS 668 

configuration that will outperform all others at all times, a priori studies to explore the sensitivity 669 

of DAS to the TW/AF ratio that is ultimately controlled by the temporal resolution of the 670 

observations and their latency should prove helpful in practice.  671 

4.3.3 Operational Forecasting Application 672 

 Here, we use the ‘best’ DAS from the flood hindcast simulations for each basin (i.e. 673 

EnKS_AF15min_TW2hr for Basin 1, EnKS_AF15min_TW1hr for Basin 2 and 674 

AEnKF_AF15min_TW2hr for Basin 3, Table 2) to simulate flood forecasting in operational 675 

mode, i.e. assimilating available discharge observations only before the forecasting time 676 

(illustrated by Figure 13).  677 

The flood forecasting results assimilating discharge observations are presented in Figure 678 

15, and the corresponding evaluation metrics are summarized in Table 4.  As discussed earlier, 679 

the purpose of asynchronous and smoother implementations of the Kalman Filter is to introduce 680 

memory in the data assimilation and thus capture nonlinear interactions that are essential to 681 

improve initial conditions for future forecasts.  This is apparent from inspecting the EnKS 682 

results:  the soil moisture storage at t-TW is improved by assimilating observations at time t, and 683 
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the updated states at t-TW (i.e. improved initial conditions for t-TW+1 onward), were propagated 684 

subsequently by the DCHM to time t. From the point of view of capturing the highly-nonlinear 685 

rainfall-runoff processes, the states propagated to t after correction by the EnKS at t-TW are 686 

more accurate than the original states at t, or the updated states at t by EnKF (i.e. improved initial 687 

conditions for t +1 onward, which is to say the EnKS updating at t-TW is equivalent to model re-688 

initialization). In the context of operational forecasts, the maximum forecast lead time is the time 689 

difference between the last step of the forecasting simulation (00UTC) and the time when the 690 

forecast is issued (as indicated by the dots on the time-axis in Figure 15).  For Basins 2 and 3, the 691 

forecasting results with shorter lead times are better than with longer lead times as expected 692 

(NSEs are summarized in Table 4). Interestingly, for Basin 1, forecast skill is best for the 12hr-693 

lead time.   This behavior is explained by the temporal variability of rainfall over the basin: the 694 

predicted storm (QPF) began around 03UTC for all three basins, and it lasted until 11UTC in 695 

Basins 2 and 3 but it stopped sharply before 09UTC in Basin 1, thus explaining the maximum 696 

lead time of 15 hours.  Assimilating discharge after the storm stops does not add forecast value 697 

because the uncertainty in rainfall is specified as a fraction of the QPF, and the corrections 698 

applied to the model state vector are too small despite large streamflow innovations. In Basins 2 699 

and 3, the major storm activity stopped around 07UTC, but it was followed by two smaller 700 

events that are essential to widen the ensemble spread of the simulations, and thus enable 701 

discharge assimilation to add information (i.e. observations are within the estimation space). 702 

Exploring strategies to represent uncertainty in the timing of rainfall onset and termination, 703 

conditional on local hydrometeorology and specific storm characteristics, should help with 704 

improving DAS performance, especially in small basins and for short heavy precipitation events 705 

which are critical for flash-flood forecasting.  Finally, note very large NSEs of 0.87, 0.78, 0.72 706 
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and 0.51 for flood forecasting in Basin 3 for 6hr, 9hr, 12hr and 15hr lead times, a robust 707 

performance that is  uncommon in operational flood forecasting, especially using uncalibrated 708 

physically-based hydrologic models (e.g. Kim and Barros, 2001 for results using data driven 709 

models). 710 

 711 

5. Conclusions and Discussion  712 

During the IPHEx-IOP, daily flood hindcasts and forecasts were conducted in a virtual 713 

operational environment without tuning initial conditions or model calibration for twelve 714 

headwater catchments in the Southern Appalachians. In the post-IOP phase of the campaign, 715 

various strategies were implemented in order to investigate alternative pathways to improve 716 

flood forecasting skill in mountainous regions including: improvement of NWP QPFs, 717 

improvement of QPEs with an eye on improving initial conditions for hydrologic modeling, and 718 

improvement of QFFs (Quantitative flash-Flood Forecasts) through assimilation of discharge 719 

observations.  The latter proved to be the most promising approach attaining superior (an 720 

unprecedented) skill for long lead-times in headwater basins. The study also illustrated the 721 

sensitivity of DAS to basin hydro-geomorphic characteristics in addition to the temporal and 722 

spatial structure of rainfall: a survey of Table 2 shows that DCHM-DAS skill metrics for Basins 723 

1 and 3, larger watersheds with alluvial valleys and slower rainfall-runoff response, are 724 

significantly less variable among the various configurations than the skill metrics for Basin 2, a 725 

small catchment with shallow gravelly soils and steep slopes. 726 

Future operational testbeds could benefit from multi-model QPFs and multi-model QFFs 727 

(i.e. using multiple hydrological models with multi-source of QPFs to produce a multi-model 728 
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streamflow ensemble), implementation of operational forecasting with longer lead times on the 729 

basis of local time (instead of UTC time), near-real time ingestion of  ground- and satellite-based 730 

QPEs, and assimilating not only discharge observations, but also satellite-based and/or ground-731 

based soil moisture observations, to improve initial for hydrological forecasts. The latter can 732 

provide valuable constraints to address the question of uncertainty in the choice of the 733 

assimilation time window as the antecedent space-time variability of rainfall can be characterized 734 

by the soil moisture products, i.e. estimating a suitable time window based on temporal-spatial 735 

soil moisture information for each assimilation time.  Specific opportunities for improving a 736 

number of issues are worthwhile further investigation: 737 

i) The discharge assimilation show significant flood forecasting improvements for 738 

individual events during the IPHEx-IOP.   During wet periods, the benefits of continuous DAS, 739 

specifically by correcting soil moisture, may lead to even better results by providing better initial 740 

conditions for sequential storms. Nevertheless, only one major storm occurred during the IPHEx-741 

IOP, and further evaluation of the coupled DCHM-DAS should be pursued for a larger number 742 

of storms encompassing representative synoptic and mesoscale weather regimes.. This could be 743 

accomplished in the future by selecting a historical period with  several successive events for 744 

investigating of the system’s effectiveness in improving initial conditions of later events by 745 

assimilating discharge observations of preceding events. Further work is also needed to 746 

implement the data assimilation systems tested here in realistic operational environments.  747 

ii) Even though a unique combination of high-quality QPE products was obtained for the 748 

campaign, none of these are perfect, i.e. raingauge data only represent point-scale observations, 749 

ground-based radar observations severely suffer from topography related errors in mountainous 750 

regions, and satellite-based observations are limited by retrieval uncertainty and typically have 751 
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coarse spatial and, or temporal resolution.   Assimilating discharge data for correcting rainfall 752 

and model parameters using lumped hydrologic models was pursued previously (Harader et al., 753 

2012), but it had not yet been attempted using a fully-distributed model in mountainous terrain.   754 

Further research is needed to integrate the benefits of improved QPFs and QPEs with hydrologic 755 

DAS. 756 

iii) Because landslides (e.g. debris flow) are linked often to flood events in mountainous 757 

terrain, there is an opportunity to further extend the operational flood forecasting framework to 758 

include landslide initiation as in Tao and Barros (2014a).  759 
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Appendix: Data Assimilation Algorithms 774 

Data assimilation schemes include two models, a state equation or an input-to-state 775 

forward model (the physics model) that propagates hydrologic states in time, and an observation 776 

operator or a state-to-output model that relates hydrologic states with observations (Liu and 777 

Gupta, 2007). The forward model is represented using Equation (1), 778 

 x t x t 1 , α, u t , t ω t  (1)

where x t  is the state vector,  is the DCHM in our case, α represents time-invariant data sets 779 

or model parameters, u t  represents time-variant forcing data sets, and ω t  is the uncertainty in 780 

the model structure. Given appropriate uncertainty representation, an ensemble of a number of 781 

replicates of the state vector is propagated from t-1 to t. Each replicate of the state vector can be 782 

written as x t  where j is the jth replicate of an ensemble of size Ne. In this study, the control 783 

variables include soil moisture from each soil layer at all the pixels within a basin, i.e. x784 

θ , … , θ , θ , … , θ , θ , … , θ  where θ∗is the soil moisture in the top soil layer, θ∗ is the soil 785 

moisture in the middle soil layer, and θ∗ is the soil moisture in the deep soil layer.  is the total 786 

number of basin grid elements.  The size of the state vector x  is	Ns 1, where Ns  3N  is 787 

the total number of control variables or states.  788 

The observations operator   maps the true state vector to the observations vector ,  789 

 ∗  t  (2)

where  t 		represents the uncertainty associated with the observations, distributed with a zero 790 

mean and a covariance matrix . Here  are the discharge observations at basin outlets, and 791 
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thus  represents the non-linear hydrological processes converting soil moisture states to the 792 

basin discharge, which indeed is a Markov process relating observations not only to the states at 793 

current time but also at antecedent time steps (indicated by ∗ ). The various ensemble data 794 

assimilation schemes differ in the updating strategies. 795 

a) Ensemble Kalman Filter (EnKF) and Asynchronous EnKF 796 

 In the EnKF, the updating equation is given by, 797 

 M  (3)

where  represents the updated states (posterior or analysis) and  is the state vector 798 

before updating (prior or background estimates), M  is the jth replicate of streamflow 799 

estimates by the DCHM, and  is the Kalman gain matrix calculated as follows: 800 

  (4)

 is the error cross covariance between state vector and estimated measurements at current 801 

(DA) time t, and  and  are the error covariance matrices associated with the predicted 802 

measurements and the observations, respectively.  803 

The Asynchronous EnKF (AEnKF) is a modified version of the EnKF recently proposed 804 

by Sakov et al. (2010), which accounts for mismatches between historical estimates and 805 

observations at times different from the assimilation time. The updating equation for the AEnKF 806 

is expressed by Equation (6), 807 
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  (5)

where the Kalman gain matrix  is calculated by augmenting the state vector with past model 808 

predictions within an assimilating time window (TW) (see details in (Rakovec et al., 2015)), and 809 

the transpose vectors   and  include all the observations and model predictions within the 810 

TW. Note that the dimension of  is different from  in Equation (4). 811 

b) Ensemble Kalman Smoother (EnKS) 812 

In the EnKS, the updating is not just applied to the current time step, but can be also 813 

applied for previous time steps within an assimilating time window (TW). The updating equation 814 

of a fixed-lag EnKS is expressed by: 815 

  (6)

and the error cross covariance  in the Kalman gain matrix  is calculated using the 816 

antecedent state variables at t-TW and the model predictions at current time t. Others are the 817 

same as for equation (3), and the  here has the same dimension as  in Equation (4). 818 

Equation (6) indicates that the updating procedure can be performed for multiple prior time steps 819 

within the TW. However, for physically-based and fully-distributed hydrological models such as 820 

the DCHM, the memory of the hydrologic system (e.g. soil water storage in the basin) cannot be 821 

directly explained in the EnKS, and thus it needs to be propagated forward by the model itself, 822 

that is equivalent to model re-initialization (Li et al., 2015).  In this study, only the states at t-TW 823 

are updated using Equation (6) and then are propagated in time by the DCHM.  824 



 

39 
 

References  825 

Addor, N., Jaun, S., Fundel, F., Zappa, M., 2011. An operational hydrological ensemble 826 

prediction system for the city of Zurich (Switzerland): skill, case studies and scenarios. 827 

Hydrol Earth Syst Sc, 15(7): 2327-2347. 828 

Alfieri, L. et al., 2014. Evaluation of ensemble streamflow predictions in Europe. J. Hydrol., 517: 829 

913-922. 830 

Amengual, A. et al., 2008. A hydrometeorological model intercomparison as a tool to quantify 831 

the forecast uncertainty in a medium size basin. Nat Hazard Earth Sys, 8(4): 819-838. 832 

Amengual, A., Romero, R., Vich, M., Alonso, S., 2009. Inclusion of potential vorticity 833 

uncertainties into a hydrometeorological forecasting chain: application to a medium size 834 

basin of Mediterranean Spain. Hydrol Earth Syst Sc, 13(6): 793-811. 835 

Anagnostou, M.N. et al., 2013. Performance Evaluation of a New Dual-Polarization 836 

Microphysical Algorithm Based on Long-Term X-Band Radar and Disdrometer 837 

Observations. J. Hydrometeorol., 14(2): 560-576. 838 

Band, L.E., Hwang, T., Hales, T.C., Vose, J., Ford, C., 2012. Ecosystem processes at the 839 

watershed scale: Mapping and modeling ecohydrological controls of landslides. 840 

Geomorphology, 137(1): 159-167. 841 

Barros, A.P., 1995. Adaptive Multilevel Modeling of Land-Atmosphere Interactions. Journal of 842 

Climate, 8(9): 2144-2160. 843 

Barros, A.P. et al., 2014. NASA GPM-Ground Validation: Integrated Precipitation and 844 

Hydrology Experiment 2014 Science Plan. EPL/Duke University (Pub.): 64. 845 



 

40 
 

Bartholmes, J.C., Thielen, J., Ramos, M.H., Gentilini, S., 2009. The european flood alert system 846 

EFAS - Part 2: Statistical skill assessment of probabilistic and deterministic operational 847 

forecasts. Hydrol Earth Syst Sc, 13(2): 141-153. 848 

Benoit, R., Kouwen, N., Yu, W., Chamberland, S., Pellerin, P., 2003. Hydrometeorological 849 

aspects of the Real-Time Ultrafinescale Forecast Support during the Special Observing 850 

Period of the MAP. Hydrol Earth Syst Sc, 7(6): 877-889. 851 

Berthet, L., Andreassian, V., Perrin, C., Javelle, P., 2009. How crucial is it to account for the 852 

antecedent moisture conditions in flood forecasting? Comparison of event-based and 853 

continuous approaches on 178 catchments. Hydrol Earth Syst Sc, 13(6): 819-831. 854 

Bloschl, G., Reszler, C., Komma, J., 2008. A spatially distributed flash flood forecasting model. 855 

Environmental Modelling & Software, 23(4): 464-478. 856 

Campbell, G.S., 1974. A simple method for determining unsaturated conductivity from moisture 857 

retention data. Soil Sci., 117(6): 311-314. 858 

Casadel, M., Dietrich, W.E., Miller, N.L., 2003. Testing a model for predicting the timing and 859 

location of shallow landslide initiation in soil-mantled landscapes. Earth Surface 860 

Processes and Landforms, 28(9): 925-950. 861 

Castaings, W., Dartus, D., Le Dimet, F.X., Saulnier, G.M., 2009. Sensitivity analysis and 862 

parameter estimation for distributed hydrological modeling: potential of variational 863 

methods. Hydrol Earth Syst Sc, 13(4): 503-517. 864 

Ciach, G.J., Krajewski, W.F., Villarini, G., 2007. Product-error-driven uncertainty model for 865 

probabilistic quantitative precipitation estimation with NEXRAD data. J. Hydrometeorol., 866 

8(6): 1325-1347. 867 



 

41 
 

Clark, M.P. et al., 2008. Hydrological data assimilation with the ensemble Kalman filter: Use of 868 

streamflow observations to update states in a distributed hydrological model. Adv. Water 869 

Resour., 31(10): 1309-1324. 870 

Cloke, H.L., Pappenberger, F., 2009. Ensemble flood forecasting: A review. J. Hydrol., 375(3-4): 871 

613-626. 872 

Coccia, G., Todini, E., 2011. Recent developments in predictive uncertainty assessment based on 873 

the model conditional processor approach. Hydrol Earth Syst Sc, 15(10): 3253-3274. 874 

Collier, C.G., 2007. Flash flood forecasting: What are the limits of predictability? Quarterly 875 

Journal of the Royal Meteorological Society, 133(622): 3-23. 876 

Connelly, B.A. et al., 1999. Advanced hydrologic prediction system. Journal of Geophysical 877 

Research-Atmospheres, 104(D16): 19655-19660. 878 

Crow, W.T., Reichle, R.H., 2008. Comparison of adaptive filtering techniques for land surface 879 

data assimilation. Water Resources Research, 44(8). 880 

Crow, W.T., Van Loon, E., 2006. Impact of incorrect model error assumptions on the sequential 881 

assimilation of remotely sensed surface soil moisture. J. Hydrometeorol., 7(3): 421-432. 882 

Cuo, L., Pagano, T.C., Wang, Q.J., 2011. A Review of Quantitative Precipitation Forecasts and 883 

Their Use in Short- to Medium-Range Streamflow Forecasting. J. Hydrometeorol., 12(5): 884 

713-728. 885 

Davolio, S. et al., 2009. High resolution simulations of a flash flood near Venice. Nat Hazard 886 

Earth Sys, 9(5): 1671-1678. 887 

Davolio, S., Miglietta, M.M., Diomede, T., Marsigli, C., Montani, A., 2013. A flood episode in 888 

northern Italy: multi-model and single-model mesoscale meteorological ensembles for 889 

hydrological predictions. Hydrol Earth Syst Sc, 17(6): 2107-2120. 890 



 

42 
 

De Jongh, I., Quintelier, E., Cauwenberghs, K., 2012. Using combined raingauge and high-891 

resolution radar data in an operational flood forecast system in Flanders. Weather Radar 892 

and Hydrology, 351: 472-477. 893 

Demargne, J. et al., 2009. Application of Forecast Verification Science to Operational River 894 

Forecasting in the US National Weather Service. Bulletin of the American 895 

Meteorological Society, 90(6): 779-784. 896 

Demargne, J. et al., 2014. The Science of NOAA's Operational Hydrologic Ensemble Forecast 897 

Service. Bulletin of the American Meteorological Society, 95(1): 79-98. 898 

Demeritt, D., Nobert, S., Cloke, H.L., Pappenberger, F., 2013. The European Flood Alert System 899 

and the communication, perception, and use of ensemble predictions for operational flood 900 

risk management. Hydrol Process, 27(1): 147-157. 901 

Devonec, E., Barros, A.P., 2002. Exploring the transferability of a land-surface hydrology model. 902 

J. Hydrol., 265(1-4): 258-282. 903 

Dietrich, J. et al., 2009. Assessing uncertainties in flood forecasts for decision making: prototype 904 

of an operational flood management system integrating ensemble predictions. Nat Hazard 905 

Earth Sys, 9(4): 1529-1540. 906 

Drobinski, P. et al., 2014. HYMEX A 10-Year Multidisciplinary Program on the Mediterranean 907 

Water Cycle. Bulletin of the American Meteorological Society, 95(7): 1063-+. 908 

Droegemeier, K.K. et al., 2000. Hydrological aspects of weather prediction and flood warnings: 909 

Report of the Ninth Prospectus Development Team of the US Weather Research Program. 910 

Bulletin of the American Meteorological Society, 81(11): 2665-2680. 911 



 

43 
 

Ducrocq, V. et al., 2014. HYMEX-SOPI The Field Campaign Dedicated to Heavy Precipitation 912 

and Flash Flooding in the Northwestern Mediterranean. Bulletin of the American 913 

Meteorological Society, 95(7): 1083-+. 914 

Ebert, E.E., 2001. Ability of a poor man's ensemble to predict the probability and distribution of 915 

precipitation. Mon. Weather Rev., 129(10): 2461-2480. 916 

Evensen, G., 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using 917 

Monte Carlo methods to forecast error statistics. Journal of Geophysical Research-918 

Oceans, 99(C5): 10143-10162. 919 

Evensen, G., 2003. The ensemble Kalman filter: Theoretical formulation and practical 920 

implementation. Ocean Dynam, 53(4): 343-367. 921 

Evensen, G., van Leeuwen, P.J., 2000. An ensemble Kalman smoother for nonlinear dynamics. 922 

Mon. Weather Rev., 128(6): 1852-1867. 923 

Ferretti, R. et al., 2014. Overview of the first HyMeX Special Observation Period over Italy: 924 

observations and model results. Hydrol Earth Syst Sc, 18(5): 1953-1977. 925 

Flores, A.N., Entekhabi, D., Bras, R.L., 2010. Reproducibility of soil moisture ensembles when 926 

representing soil parameter uncertainty using a Latin Hypercube-based approach with 927 

correlation control. Water Resources Research, 46. 928 

Garambois, P.A., Roux, H., Larnier, K., Castaings, W., Dartus, D., 2013. Characterization of 929 

process-oriented hydrologic model behavior with temporal sensitivity analysis for flash 930 

floods in Mediterranean catchments. Hydrol Earth Syst Sc, 17(6): 2305-2322. 931 

Garcia-Pintado, J., Barbera, G.G., Erena, M., Castillo, V.M., 2009. Calibration of structure in a 932 

distributed forecasting model for a semiarid flash flood: Dynamic surface storage and 933 

channel roughness. J. Hydrol., 377(1-2): 165-184. 934 



 

44 
 

Garcia-Quijano, J.F., Barros, A.P., 2005. Incorporating canopy physiology into a hydrological 935 

model: photosynthesis, dynamic respiration, and stomatal sensitivity. Ecological 936 

Modelling, 185(1): 29-49. 937 

Gebremichael, M., Barros, A.P., 2006. Evaluation of MODIS gross primary productivity (GPP) 938 

in tropical monsoon regions. Remote Sensing of Environment, 100(2): 150-166. 939 

Gourley, J.J., Vieux, B.E., 2005. A method for evaluating the accuracy of quantitative 940 

precipitation estimates from a hydrologic modeling perspective. J. Hydrometeorol., 6(2): 941 

115-133. 942 

Gupta, H.V., Kling, H., Yilmaz, K.K., Martinez, G.F., 2009. Decomposition of the mean squared 943 

error and NSE performance criteria: Implications for improving hydrological modelling. 944 

J. Hydrol., 377(1-2): 80-91. 945 

Hapuarachchi, H.A.P., Wang, Q.J., Pagano, T.C., 2011. A review of advances in flash flood 946 

forecasting. Hydrol Process. 947 

Hersbach, H., 2000. Decomposition of the continuous ranked probability score for ensemble 948 

prediction systems. Weather and Forecasting, 15(5): 559-570. 949 

Hogue, T.S., Sorooshian, S., Gupta, H., Holz, A., Braatz, D., 2000. A multistep automatic 950 

calibration scheme for river forecasting models. J. Hydrometeorol., 1(6): 524-542. 951 

Hsiao, L.F. et al., 2013. Ensemble forecasting of typhoon rainfall and floods over a mountainous 952 

watershed in Taiwan. J. Hydrol., 506: 55-68. 953 

Huffman, G., 2015. GPM Level 3 IMERG Half Hourly 0.1 x 0.1 degree Precipitation,version 03. 954 

NASA Goddard Space Flight Center Distributed Active Archive Center (GSFC DAAC), 955 

Greenbelt, MD. 956 



 

45 
 

Huffman, G.J. et al., 2014. NASA Global Precipitation Measurement (GPM) Integrated Multi - 957 

satellitE Retrievals for GPM  (IMERG), NASA/GSFC, Greenbelt, MD. 958 

Jasper, K., Gurtz, J., Herbert, L., 2002. Advanced flood forecasting in Alpine watersheds by 959 

coupling meteorological observations and forecasts with a distributed hydrological model. 960 

J. Hydrol., 267(1-2): 40-52. 961 

Jaun, S., Ahrens, B., 2009. Evaluation of a probabilistic hydrometeorological forecast system. 962 

Hydrol Earth Syst Sc, 13(7): 1031-1043. 963 

Kalogiros, J. et al., 2013a. Correction of Polarimetric Radar Reflectivity Measurements and 964 

Rainfall Estimates for Apparent Vertical Profile in Stratiform Rain. Journal of Applied 965 

Meteorology and Climatology, 52(5): 1170-1186. 966 

Kalogiros, J. et al., 2013b. Optimum Estimation of Rain Microphysical Parameters From X-Band 967 

Dual-Polarization Radar Observables. Ieee Transactions on Geoscience and Remote 968 

Sensing, 51(5): 3063-3076. 969 

Kalogiros, J. et al., 2014. Evaluation of a New Polarimetric Algorithm for Rain-Path Attenuation 970 

Correction of X-Band Radar Observations Against Disdrometer. Ieee Transactions on 971 

Geoscience and Remote Sensing, 52(2): 1369-1380. 972 

Kang, D., Barros, A., Déry, S., 2013. Evaluating Passive Microwave Radiometry for the 973 

Dynamical Transition From Dry to Wet Snowpacks. IEEE Transactions on Geoscience 974 

and Remote Sensing. 975 

Kang, D.H., Barros, A.P., 2012a. Observing System Simulation of Snow Microwave Emissions 976 

Over Data Sparse Regions-Part I: Single Layer Physics. IEEE Transactions on 977 

Geoscience and Remote Sensing, 50(5): 1785-1805. 978 



 

46 
 

Kang, D.H., Barros, A.P., 2012b. Observing System Simulation of Snow Microwave Emissions 979 

Over Data Sparse Regions-Part II: Multilayer Physics. IEEE Transactions on Geoscience 980 

and Remote Sensing, 50(5): 1806-1820. 981 

Kim, G., Barros, A.P., 2001. Quantitative flood forecasting using multisensor data and neural 982 

networks. J. Hydrol., 246(1-4): 45-62. 983 

Kirstetter, P.-E. et al., 2012. Toward a Framework for Systematic Error Modeling of Spaceborne 984 

Precipitation Radar with NOAA/NSSL Ground Radar Based National Mosaic QPE. J. 985 

Hydrometeorol., 13(4): 1285-1300. 986 

Kling, H., Fuchs, M., Paulin, M., 2012. Runoff conditions in the upper Danube basin under an 987 

ensemble of climate change scenarios. J. Hydrol., 424: 264-277. 988 

Komma, J., Bloschl, G., Reszler, C., 2008. Soil moisture updating by Ensemble Kalman Filtering 989 

in real-time flood forecasting. J. Hydrol., 357(3-4): 228-242. 990 

Lee, H., Seo, D.J., Koren, V., 2011. Assimilation of streamflow and in situ soil moisture data 991 

into operational distributed hydrologic models: Effects of uncertainties in the data and 992 

initial model soil moisture states. Adv. Water Resour., 34(12): 1597-1615. 993 

Li, H.B., Luo, L.F., Wood, E.F., Schaake, J., 2009. The role of initial conditions and forcing 994 

uncertainties in seasonal hydrologic forecasting. Journal of Geophysical Research-995 

Atmospheres, 114. 996 

Li, Y., Ryu, D., Western, A.W., Wang, Q., 2015. Assimilation of stream discharge for flood 997 

forecasting: Updating a semidistributed model with an integrated data assimilation 998 

scheme. Water Resources Research. 999 



 

47 
 

Li, Y., Ryu, D., Western, A.W., Wang, Q.J., 2013. Assimilation of stream discharge for flood 1000 

forecasting: The benefits of accounting for routing time lags. Water Resources Research, 1001 

49(4): 1887-1900. 1002 

Li, Y. et al., 2014. An integrated error parameter estimation and lag-aware data assimilation 1003 

scheme for real-time flood forecasting. J. Hydrol., 519: 2722-2736. 1004 

Liao, Z. et al., 2011. Evaluation of TRIGRS (transient rainfall infiltration and grid-based regional 1005 

slope-stability analysis)'s predictive skill for hurricane-triggered landslides: a case study 1006 

in Macon County, North Carolina. Nat Hazards, 58(1): 325-339. 1007 

Lin, X., Kidd, C., Tao, J., Barros, A.P., 2015. Comparisons of Rain Estimates from Ground 1008 

Radar and Satellite over Mountainous Regions. Journal of Hydrometeorology (In 1009 

Revision). 1010 

Lin, Y., Mitchell, K., 2005. The NCEP stage II/IV hourly precipitation analyses: Development 1011 

and applications, 19th Conf. on Hydrology, , Amer. Meteor. Soc., San Diego, CA. 1012 

Liu, Y. et al., 2012. Advancing data assimilation in operational hydrologic forecasting: 1013 

progresses, challenges, and emerging opportunities. Hydrol Earth Syst Sc, 16(10): 3863-1014 

3887. 1015 

Liu, Y.Q., Gupta, H.V., 2007. Uncertainty in hydrologic modeling: Toward an integrated data 1016 

assimilation framework. Water Resources Research, 43(7). 1017 

Lu, C., Yuan, H., Tollerud, E.I., Wang, N., 2010. Scale-Dependent Uncertainties in Global QPFs 1018 

and QPEs from NWP Model and Satellite Fields. J. Hydrometeorol., 11(1): 139-155. 1019 

Madsen, H., Skotner, C., 2005. Adaptive state updating in real-time river flow forecasting - a 1020 

combined filtering and error forecasting procedure. J. Hydrol., 308(1-4): 302-312. 1021 



 

48 
 

Martina, M.L.V., Todini, E., Libralon, A., 2008. Rainfall Thresholds for Flood Warning Systems: 1022 

A Bayesian Decision Approach. Water Trans, 63: 203-227, 291. 1023 

Mascaro, G., Vivoni, E.R., Deidda, R., 2010. Implications of Ensemble Quantitative 1024 

Precipitation Forecast Errors on Distributed Streamflow Forecasting. J. Hydrometeorol., 1025 

11(1): 69-86. 1026 

Matsui, T. et al., 2013. GPM Satellite Simulator over Ground Validation Sites. Bulletin of the 1027 

American Meteorological Society, 94(11): 1653-1660. 1028 

Matsui, T. et al., 2014. Introducing multisensor satellite radiance-based evaluation for regional 1029 

Earth System modeling. Journal of Geophysical Research-Atmospheres, 119(13). 1030 

McEnery, J., Ingram, J., Duan, Q.Y., Adams, T., Anderson, L., 2005. NOAA's advanced 1031 

hydrologic prediction service - Building pathways for better science in water forecasting. 1032 

Bulletin of the American Meteorological Society, 86(3): 375-+. 1033 

McLaughlin, D., 2002. An integrated approach to hydrologic data assimilation: interpolation, 1034 

smoothing, and filtering. Adv. Water Resour., 25(8-12): 1275-1286. 1035 

Moore, R.J., Cole, S.J., Bell, V.A., Jones, D.A., 2006. Issues in flood forecasting: ungauged 1036 

basins, extreme floods and uncertainty. Frontiers in Flood Research, 305: 103-122. 1037 

Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I — A 1038 

discussion of principles. J. Hydrol., 10(3): 282-290. 1039 

Nester, T., Komma, J., Viglione, A., Bloschl, G., 2012. Flood forecast errors and ensemble 1040 

spread-A case study. Water Resources Research, 48. 1041 

Nogueira, M., Barros, A., 2014. The Integrated Precipitation and Hydrology Experiment - 1042 

Hydrologic Applications for the Southeast US (IPHEx-H4SE) Part III: High-Resolution 1043 



 

49 
 

Ensemble Rainfall Products. Report EPL-2013-IPHEX-H4SE-3, EPL/Duke University 1044 

(Pub.): 80. 1045 

Nogueira, M., Barros, A.P., 2015. Transient Stochastic Downscaling of Quantitative 1046 

Precipitation Estimates for Hydrological Applications. Journal of Hydrology (In 1047 

Revision). 1048 

Noh, S.J., Rakovec, O., Weerts, A.H., Tachikawa, Y., 2014. On noise specification in data 1049 

assimilation schemes for improved flood forecasting using distributed hydrological 1050 

models. J. Hydrol., 519: 2707-2721. 1051 

Norbiato, D., Borga, M., Esposti, S.D., Gaume, E., Anquetin, S., 2008. Flash flood warning 1052 

based on rainfall thresholds and soil moisture conditions: An assessment for gauged and 1053 

ungauged basins. J. Hydrol., 362(3-4): 274-290. 1054 

Pagano, T.C. et al., 2014. Challenges of Operational River Forecasting. J. Hydrometeorol., 15(4): 1055 

1692-1707. 1056 

Palmer, R. et al., 2009. Weather Radar Education at the University of Oklahoma An Integrated 1057 

Interdisciplinary Approach. Bulletin of the American Meteorological Society, 90(9): 1058 

1277-1282. 1059 

Pappenberger, F. et al., 2005. Cascading model uncertainty from medium range weather 1060 

forecasts (10 days) through a rainfall-runoff model to flood inundation predictions within 1061 

the European Flood Forecasting System (EFFS). Hydrol Earth Syst Sc, 9(4): 381-393. 1062 

Pappenberger, F. et al., 2015. How do I know if my forecasts are better? Using benchmarks in 1063 

hydrological ensemble prediction. J. Hydrol., 522: 697-713. 1064 

Pappenberger, F., Scipal, K., Buizza, R., 2008. Hydrological aspects of meteorological 1065 

verification. Atmos. Sci. Lett., 9(2): 43-52. 1066 



 

50 
 

Peters-Lidard, C.D. et al., 2015. Integrated modeling of aerosol, cloud, precipitation and land 1067 

processes at satellite-resolved scales. Environmental Modelling & Software, 67: 149-159. 1068 

Petersen, W., Krajewski, W., 2013. Status Update on the GPM Ground Validation Iowa Flood 1069 

Studies (IFloodS) Field Experiment, EGU General Assembly Conference Abstracts, pp. 1070 

13345. 1071 

Prat, O.P., Barros, A.P., 2010. Assessing satellite-based precipitation estimates in the Southern 1072 

Appalachian mountains using rain gauges and TRMM PR. Advances in Geosciences, 25: 1073 

143-153. 1074 

Rabuffetti, D., Barbero, S., 2005. Operational hydro-meteorological warning and real-time flood 1075 

forecasting: the Piemonte Region case study. Hydrol Earth Syst Sc, 9(4): 457-466. 1076 

Rabuffetti, D., Ravazzani, G., Corbari, C., Mancini, M., 2008. Verification of operational 1077 

Quantitative Discharge Forecast (QDF) for a regional warning system - the AMPHORE 1078 

case studies in the upper Po River. Nat Hazard Earth Sys, 8(1): 161-173. 1079 

Rakovec, O., Weerts, A.H., Hazenberg, P., Torfs, P.J.J.F., Uijlenhoet, R., 2012. State updating of 1080 

a distributed hydrological model with Ensemble Kalman Filtering: effects of updating 1081 

frequency and observation network density on forecast accuracy. Hydrol Earth Syst Sc, 1082 

16(9): 3435-3449. 1083 

Rakovec, O., Weerts, A.H., Sumihar, J., Uijlenhoet, R., 2015. Operational aspects of 1084 

asynchronous filtering for flood forecasting. Hydrol. Earth Syst. Sci., 19(6): 2911-2924. 1085 

Randrianasolo, A., Thirel, G., Ramos, M.H., Martin, E., 2014. Impact of streamflow data 1086 

assimilation and length of the verification period on the quality of short-term ensemble 1087 

hydrologic forecasts. J. Hydrol., 519: 2676-2691. 1088 



 

51 
 

Reed, S., Schaake, J., Zhang, Z., 2007. A distributed hydrologic model and threshold frequency-1089 

based method for flash flood forecasting at ungauged locations. J. Hydrol., 337(3-4): 402-1090 

420. 1091 

Rossa, A. et al., 2011. The COST 731 Action: A review on uncertainty propagation in advanced 1092 

hydro-meteorological forecast systems. Atmos. Res., 100(2-3): 150-167. 1093 

Rotach, M.W. et al., 2012. Uncertainty propagation for flood forecasting in the Alps: different 1094 

views and impacts from MAP D-PHASE. Nat Hazard Earth Sys, 12(8): 2439-2448. 1095 

Ryu, D., Crow, W.T., Zhan, X.W., Jackson, T.J., 2009. Correcting Unintended Perturbation 1096 

Biases in Hydrologic Data Assimilation. J. Hydrometeorol., 10(3): 734-750. 1097 

Sakov, P., Evensen, G., Bertino, L., 2010. Asynchronous data assimilation with the EnKF. Tellus 1098 

A, 62(1): 24-29. 1099 

Salamon, P., Feyen, L., 2009. Assessing parameter, precipitation, and predictive uncertainty in a 1100 

distributed hydrological model using sequential data assimilation with the particle filter. J. 1101 

Hydrol., 376(3-4): 428-442. 1102 

Schaake, J.C., Hamill, T.M., Buizza, R., Clark, M., 2007. The hydrological ensemble prediction 1103 

experiment. Bulletin of the American Meteorological Society, 88(10): 1541-+. 1104 

Seo, D.J., Koren, V., Cajina, N., 2003. Real-time variational assimilation of hydrologic and 1105 

hydrometeorological data into operational hydrologic forecasting. J. Hydrometeorol., 4(3): 1106 

627-641. 1107 

Shi, J.J. et al., 2014. Implementation of an aerosol-cloud-microphysics-radiation coupling into 1108 

the NASA unified WRF: Simulation results for the 6-7 August 2006 AMMA special 1109 

observing period. Quarterly Journal of the Royal Meteorological Society, 140(684): 1110 

2158-2175. 1111 



 

52 
 

Shrestha, D.L., Robertson, D.E., Wang, Q.J., Pagano, T.C., Hapuarachchi, H.A.P., 2013. 1112 

Evaluation of numerical weather prediction model precipitation forecasts for short-term 1113 

streamflow forecasting purpose. Hydrol Earth Syst Sc, 17(5): 1913-1931. 1114 

Sorooshian, S., Dracup, J.A., 1980. Stochastic Parameter-Estimation Procedures for Hydrologic 1115 

Rainfall-Runoff Models - Correlated and Heteroscedastic Error Cases. Water Resources 1116 

Research, 16(2): 430-442. 1117 

Tao, J., Barros, A., 2014a. Coupled prediction of flood response and debris flow initiation during 1118 

warm-and cold-season events in the Southern Appalachians, USA. Hydrol Earth Syst Sc, 1119 

18(1): 367-388. 1120 

Tao, J., Barros, A., 2014b. The Integrated Precipitation and Hydrology Experiment. Part I: 1121 

Quality High-Resolution Landscape Attributes Datasets. Report EPL-2013-IPHEX-1122 

H4SE-1, EPL/Duke University (Pub.): 60. 1123 

Tao, J., Barros, A., 2014c. The Integrated Precipitation and Hydrology Experiment. Part II: 1124 

Atmospheric Forcing and Topographic Corrections. Report EPL-2013-IPHEX-H4SE-2, 1125 

EPL/Duke University (Pub.): 80. 1126 

Tao, J., Barros, A.P., 2013. Prospects for flash flood forecasting in mountainous regions - An 1127 

investigation of Tropical Storm Fay in the Southern Appalachians. J. Hydrol., 506: 69-89. 1128 

Taramasso, A.C., Gabellani, S., Parodi, A., 2005. An operational flash-flood forecasting chain 1129 

applied to the test cases of the EU project HYDROPTIMET. Nat Hazard Earth Sys, 5(5): 1130 

703-710. 1131 

Thielen, J., Bartholmes, J., Ramos, M.H., de Roo, A., 2009. The European Flood Alert System - 1132 

Part 1: Concept and development. Hydrol Earth Syst Sc, 13(2): 125-140. 1133 



 

53 
 

Vasiloff, S.V. et al., 2007. Improving QPE and very short term QPF: An initiative for a 1134 

community-wide integrated approach. Bulletin of the American Meteorological Society, 1135 

88(12): 1899-1911. 1136 

Verbunt, M., Walser, A., Gurtz, J., Montani, A., Schar, C., 2007. Probabilistic flood forecasting 1137 

with a limited-area ensemble prediction system: Selected case studies. J. Hydrometeorol., 1138 

8(4): 897-909. 1139 

Versini, P.A., Berenguer, M., Corral, C., Sempere-Torres, D., 2014. An operational flood 1140 

warning system for poorly gauged basins: demonstration in the Guadalhorce basin 1141 

(Spain). Nat Hazards, 71(3): 1355-1378. 1142 

Vincendon, B., Ducrocq, V., Nuissier, O., Vie, B., 2014. Real-time  hydro-meteorological  1143 

ensemble forecasting  during the HYMEX SOP1 European Meteorological Society. 1144 

Vrugt, J.A., Gupta, H.V., Nuallain, B.O., 2006. Real-time data assimilation for operational 1145 

ensemble streamflow forecasting. J. Hydrometeorol., 7(3): 548-565. 1146 

Wanders, N., Karssenberg, D., de Roo, A., de Jong, S.M., Bierkens, M.F.P., 2014. The suitability 1147 

of remotely sensed soil moisture for improving operational flood forecasting. Hydrol 1148 

Earth Syst Sc, 18(6): 2343-2357. 1149 

Welles, E., Sorooshian, S., Carter, G., Olsen, B., 2007. Hydrologic verification - A call for action 1150 

and collaboration. Bulletin of the American Meteorological Society, 88(4): 503-+. 1151 

Werner, M., Cranston, M., Harrison, T., Whitfield, D., Schellekens, J., 2009. Recent 1152 

developments in operational flood forecasting in England, Wales and Scotland. Meteorol 1153 

Appl, 16(1): 13-22. 1154 



 

54 
 

Wilson, A.M., Barros, A.P., 2014. An Investigation of Warm Rainfall Microphysics in the 1155 

Southern Appalachians: Orographic Enhancement via Low-Level Seeder-Feeder 1156 

Interactions. Journal of the Atmospheric Sciences, 71(5): 1783-1805. 1157 

Wilson, A.M., Barros, A.P., 2015. Landform Controls on Low Level Moisture Convergence and 1158 

the Diurnal Cycle of Warm Season Orographic Rainfall in Middle Mountains - 1159 

Observations and Modeling in the Southern Appalachians. Journal of Hydrology (In 1160 

Review). 1161 

Wooten, R.M. et al., 2008. Geologic, geomorphic, and meteorological aspects of debris flows 1162 

triggered by Hurricanes Frances and Ivan during September 2004 in the Southern 1163 

Appalachian Mountains of Macon County, North Carolina (southeastern USA). 1164 

Landslides, 5(1): 31-44. 1165 

Xie, X.H., Zhang, D.X., 2010. Data assimilation for distributed hydrological catchment modeling 1166 

via ensemble Kalman filter. Adv. Water Resour., 33(6): 678-690. 1167 

Xuan, Y., Cluckie, I.D., Wang, Y., 2009. Uncertainty analysis of hydrological ensemble 1168 

forecasts in a distributed model utilising short-range rainfall prediction. Hydrol Earth 1169 

Syst Sc, 13(3): 293-303. 1170 

Yildiz, O., Barros, A.P., 2005. Climate Variability and Hydrologic Extremes-Modeling the 1171 

Water and Energy Budgets in the Monongahela River Basin. Climate and Hydrology in 1172 

Mountain Areas. Wiley. 1173 

Yildiz, O., Barros, A.P., 2007. Elucidating vegetation controls on the hydroclimatology of a mid-1174 

latitude basin. J. Hydrol., 333(2-4): 431-448. 1175 

Yildiz, O., Barros, A.P., 2009. Evaluating spatial variability and scale effects on hydrologic 1176 

processes in a midsize river basin. Scientific Research and Essays, 4(4): 217-225. 1177 



 

55 
 

Zaitchik, B.F., Santanello, J.A., Kumar, S.V., Peters-Lidard, C.D., 2013. Representation of Soil 1178 

Moisture Feedbacks during Drought in NASA Unified WRF (NU-WRF). J. 1179 

Hydrometeorol., 14(1): 360-367. 1180 

Zappa, M. et al., 2010. Propagation of uncertainty from observing systems and NWP into 1181 

hydrological models: COST-731 Working Group 2. Atmos. Sci. Lett., 11(2): 83-91. 1182 

Zappa, M., Jaun, S., Germann, U., Walser, A., Fundel, F., 2011. Superposition of three sources 1183 

of uncertainties in operational flood forecasting chains. Atmos. Res., 100(2-3): 246-262. 1184 

Zappa, M. et al., 2008. MAP D-PHASE: real-time demonstration of hydrological ensemble 1185 

prediction systems. Atmos. Sci. Lett., 9(2): 80-87. 1186 

Zhang, J. et al., 2014. Initial operating capabilities of quantitative precipitation estimation in the 1187 

multi-radar multi-sensor system, 28th Conf. on Hydrology, Amer. Meteor. Soc., Atlanta, 1188 

GA. 1189 

Zhang, S.Q., Zupanski, M., Hou, A.Y., Lin, X., Cheung, S.H., 2013. Assimilation of 1190 

Precipitation-Affected Radiances in a Cloud-Resolving WRF Ensemble Data 1191 

Assimilation System. Mon. Weather Rev., 141(2): 754-772. 1192 

Zoccatelli, D., Borga, M., Zanon, F., Antonescu, B., Stancalie, G., 2010. Which rainfall spatial 1193 

information for flash flood response modelling? A numerical investigation based on data 1194 

from the Carpathian range, Romania. J. Hydrol., 394(1-2): 148-161. 1195 

Zupanski, D., Zhang, S.Q., Zupanski, M., Hou, A.Y., Cheung, S.H., 2011. A Prototype WRF-1196 

Based Ensemble Data Assimilation System for Dynamically Downscaling Satellite 1197 

Precipitation Observations. J. Hydrometeorol., 12(1): 118-134. 1198 

  1199 



 

56 
 

List of Tables 1200 

Table 1 – Information about the stream gauges of the 12 forecast basins. ................................... 59 1201 
Table 2 – Data assimilation schemes tested and the associated implementation parameters, i.e. 1202 
assimilation frequency (AF) and time window (TW). Three efficiency indices including NSE 1203 
(Nash–Sutcliffe efficiency) (Nash and Sutcliffe, 1970), the KGE (Kling-Gupta Efficiency), and 1204 
the modified KGE (Gupta et al., 2009; Kling et al., 2012) of the produced hindcast simulation are 1205 
shown for each basin. In addition, the error in peak value (EPV, m3/s) and the error in peak time 1206 
(EPT, in minutes) are also provided. The best NSE and the used DA scheme for each basin are 1207 
highlighted. ................................................................................................................................... 60 1208 
Table 3 - Perturbation methods and parameters applied in this study. ......................................... 62 1209 
Table 4 – Evaluation metrics of forecast results with 6 hour to 15 hour maximum leading time 1210 
using the identified best DA scheme for each basin. .................................................................... 63 1211 
 1212 

List of Figures 1213 

Figure 1 – The operational hydrological forecasts during the IPHEx-IOP were conducted at 12 1214 
small basins that are not limited by dam operation (labeled in panel b)), and are critical 1215 
headwater catchments of the Pigeon River Basin (Basin 1-3), the Upper French Broad River 1216 
Basin (Basin 4-5), the Upper Broad River Basin (Basin 6-7), the Upper Catawba River Basin 1217 
(Basin 9-10) and the upper Yadkin River Basin (Basin 11-12). Green dots represent the 1218 
forecasting locations which are collocated with USGS stream gauges. A dense observation 1219 
network including rain gauges from NASA, Duke PMM, HADS and ECONet in the Pigeon 1220 
River Basin are shown in the panel c). ......................................................................................... 64 1221 
Figure 2 – The workflow for producing daily forecasts/hindcasts and assessment metrics at Duke 1222 
(Barros et al. 2014). ...................................................................................................................... 65 1223 
Figure 3 – The left panel shows Nu-WRF nested modeling domains during the IPHEx campaign; 1224 
the right panel shows the position of the 3rd domain (the most inner) of NU-WRF, the IPHEx 1225 
domain and the IPHEx-IOP domain using air temperature as an example. .................................. 66 1226 
Figure 4 – IPHEx-IOP Forecast/Hindcast overview (May to June 15, 2014) for Basin 1 to 5 and 1227 
Basin 10, the largest basin. Dark blue represents QPE/QPF; black lines represent discharge 1228 
observations; green lines are streamflow hindcast with Q3 as rainfall input and other atmospheric 1229 
forcing data from Nu-WRF; red lines are streamflow forecast with all the atmospheric forcing 1230 
fields from Nu-WRF. .................................................................................................................... 67 1231 
Figure 5 – Daily rainfall accumulation on May 15, 2014 from ground radar-based QPEs 1232 
(StageIV and Q3), satellite QPE (IMERG), QPFs from Nu-WRF operationally used in the 1233 
IPHEx-IOP, and the QPFs from Nu-WRF with assimilation of conventional ground-based 1234 



 

57 
 

observations (DA CNT) and  satellite-based data (DA SAT), i.e. GPM GMI and SSMIS 1235 
precipitation-affected radiance. (Note the scale for QPFs from NU-WRF with DA is different 1236 
from others.) .................................................................................................................................. 68 1237 
Figure 6 – IPHEx-IOP Forecast/Hindcast results for the largest event over the IPHEx (May 15, 1238 
2014) for all the basins. Dark blue represents QPE (StageIV and Q3) or QPF (Nu-WRF forecast); 1239 
black lines represent discharge observations; blue and green lines are streamflow hindcasts with 1240 
rainfall input from Q3 (MW) and StageIV (SW), respectively; red and pink lines are streamflow 1241 
forecast with all the atmospheric forcing fields from Nu-WRF initialized using hindcast results 1242 
from MW and SW, respectively. .................................................................................................. 69 1243 
Figure 7 – Daily rainfall accumulation on May 15, 2014 from the NOAA X-band dual polarized 1244 
(NOXP) radar deployed in the Pigeon River Basin. The hybrid data was produced by choosing 1245 
the cleanest/lowest elevation angle for each azimuth from multiple elevation angles (from 0.5 to 1246 
8 degrees). Two other gridded NOXP data with elevation angles at 1.8 degree and 2.4 degree 1247 
were also used in this study. ......................................................................................................... 70 1248 
Figure 8 – Forecast/hindcast results on May 15, 2014 using multiple QPEs (Q3, StageIV, NOXP 1249 
data at 1.8 degree and 2.4 degree elevation angles and the hybrid data, and IMERG) and QPF 1250 
from Nu-WRF in headwater catchments in the Pigeon River Basin (Basin 1 – 3, from left to 1251 
right). ............................................................................................................................................. 71 1252 
Figure 9 – Forecast results on May 15, 2014 using the improved NU-WRF QPFs by assimilating 1253 
conventional ground-based observations (DA-CNT), and assimilating satellite-based data (DA-1254 
SAT) (GPM GMI and SSMIS precipitation-affected radiance) also for the three headwater 1255 
catchments in the Pigeon River Basin (Basin 1 – 3, from left to right). ....................................... 72 1256 
Figure 10 – Scattering comparison of the original Q3 and the adjusted Q3 data (including 1257 
Q3+_All, Q3+_H/L, and Q3+_CdfThr) with observations from four raingauge networks 1258 
consisting of Duke PMM gauges, NASA dual-platform, HADS and ECONet. Row a) shows the 1259 
comparison for May 15 event, and row b) shows the comparison for data on June 12 (which 1260 
resulted in the response on June 13). ............................................................................................ 73 1261 
Figure 11 – Daily rainfall accumulation on May 15, 2014 from the original Q3 and the adjusted 1262 
Q3 data (including Q3+_All, Q3+_H/L, and Q3+_CdfThr). Note the adjustment to Q3 data only 1263 
performed in the Pigeon River Basin taking advantage of the high dense rain gauge networks. . 74 1264 
Figure 12 – Forecast/hindcast results on May 15, 2014 using the original Q3 and the adjusted Q3 1265 
data (Q3+_*) in headwater catchments in the Pigeon River Basin (Basin 1 – 3, from left to right). 1266 
The grey lines are simulation members using 50 rainfall replicates drawn from normal 1267 
distributions within 70% (row a)) and 95% (row b)) confidence interval (CI) of the regression 1268 
model, explicitly representing the uncertainty associated with Q3+_All. .................................... 75 1269 
Figure 13 – Workflow of the hydrological Data Assimilation System (DAS) for the operational 1270 
flood forecast. ............................................................................................................................... 76 1271 
Figure 14 – Hindcast results assimilating discharge observations using three DA scheme, namely 1272 
(a) EnKF, (b) AEnKF and (c) EnKS, with assimilation frequency (AF) from 15min, 30min to 1273 
60min, and assimilating time window (TW) from 1hr, 2hr to 3hr. Panel (d) summarizes the three 1274 



 

58 
 

schemes producing the best results indicating by NSE in Table 2. Only the ensemble members 1275 
(50) of the best schemes are shown for each basin, i.e. EnKS_TW15min_TW2hr for Basin 1, 1276 
EnKS_TW15min_TW1hr for Basin 2, and AEnKF_TW15min_TW2hr for Basin 3. NSEs for the 1277 
best performance of DA configuration are marked in the corresponding color in the panel (see 1278 
also table 2). .................................................................................................................................. 77 1279 
Figure 15 – Forecast results with the best DA scheme identified for each basin (i.e. 1280 
EnKS_AF15min_TW2hr for Basin 1, EnKS_AF15min_TW1hr for Basin 2, and 1281 
AEnKF_AF15min_TW2hr for Basin 3) with short to longer lead times (6hr to 15hr). The time 1282 
when the forecast is issued is marked on the time-axis by the dot colored corresponding to 1283 
streamflow forecast. LDT means lead time. ................................................................................. 79 1284 

   1285 

  1286 



 

59 
 

Table 1 – Information about the stream gauges of the 12 forecast basins. 1287 

Forecast 
Basins 

Site No. Station Name Latitude Longitude 
HUC 
Code 

Drainage 
Area(km2) 

Basin 

1 03460000 
CATALOOCHEE CREEK NEAR 
CATALOOCHEE, NC 

35.667500 -83.073611 6010106 127.4 

Pigeon 2 03455500 
WEST FORK PIGEON RIVER 
ABOVE LAKE LOGAN NR 
HAZELWOOD, NC 

35.396111 -82.937500 6010106 71.5 

3 03456500 
EAST FORK PIGEON RIVER 
NEAR CANTON, NC 

35.461667 -82.869722 6010106 133.4 

4 03439000 
FRENCH BROAD RIVER AT 
ROSMAN, NC 

35.143333 -82.824722 6010105 175.9 Upper 
French 
Broad 5 03441000 

DAVIDSON RIVER NEAR 
BREVARD, NC 

35.273056 -82.705833 6010105 104.6 

6 02149000 
COVE CREEK NEAR LAKE 
LURE, NC 

35.423333 -82.111667 3050105 204.6 
Upper 
Broad 

7 02150495 
SECOND BROAD RIVER NR 
LOGAN, NC 

35.404444 -81.872500 3050105 223.3 

8 02137727 
CATAWBA R NR PLEASANT 
GARDENS, NC 

35.685833 -82.060278 3050101 326.3 

Upper 
Catawba 

9 02138500 
LINVILLE RIVER NEAR NEBO, 
NC 

35.794722 -81.89 3050101 172.8 

10 02140991 
JOHNS RIVER AT ARNEYS 
STORE, NC 

35.833611 -81.711944 3050101 520.6 

11 02111000 
YADKIN RIVER AT 
PATTERSON, NC 

35.990833 -81.558333 3040101 74.6 Upper 
Yadkin 

12 02111180 ELK CREEK AT ELKVILLE, NC 36.071389 -81.403056 3040101 131.8 

 1288 

  1289 
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Table 2 – Data assimilation schemes tested and the associated implementation parameters, i.e. 1290 
assimilation frequency (AF) and time window (TW). Three efficiency indices including NSE 1291 
(Nash–Sutcliffe efficiency) (Nash and Sutcliffe, 1970), the KGE (Kling-Gupta Efficiency), and 1292 
the modified KGE (Gupta et al., 2009; Kling et al., 2012) of the produced hindcast simulation are 1293 
shown for each basin. In addition, the error in peak value (EPV, m3/s) and the error in peak time 1294 
(EPT, in minutes) are also provided. The best NSE and the used DA scheme for each basin are 1295 
highlighted. 1296 

Scheme TW AF Name Basin NSE KGE1 KGE2 EPV EPT

EnKF  

15min EnKF_AF15min 
B01 0.76 0.79  0.80  3.95 ‐135

B02 0.45 0.42  0.55  33.23 75

B03 0.47 0.65  0.63  5.74 195

30min EnKF_AF30min 
B01 0.69 0.71  0.75  4.78 ‐105

B02 0.45 0.44  0.56  29.70 90

B03 0.41 0.50  0.60  9.14 ‐45

1hour EnKF_AF60min 
B01 0.61 0.58  0.65  5.65 ‐270

B02 0.34 0.34  0.50  33.92 90

B03 0.19 0.35  0.47  12.23 ‐270

AEnKF 

1hr 

15min AEnKF_AF15min_TW1hr 
B01 0.71 0.65  0.75  4.09 15

B02 0.06 0.22  0.41  30.50 75

B03 0.93 0.94  0.95  ‐0.88 30

30min AEnKF_AF30min_TW1hr 
B01 0.58 0.62  0.69  5.17 ‐15

B02 0.33 0.32  0.52  32.18 90

B03 0.97 0.93  0.95  0.20 0

1hour AEnKF_AF60min_TW1hr 
B01 0.55 0.50  0.65  6.42 ‐75

B02 0.38 0.39  0.55  25.56 90

B03 0.88 0.90  0.92  ‐5.90 45

2hr 

15min AEnKF_AF15min_TW2hr
B01 0.79 0.70  0.81  3.76 ‐135

B02 0.37 0.38  0.53  26.36 90

B03 0.99 0.94  0.96  1.55 0

30min AEnKF_AF30min_TW2hr 
B01 0.72 0.75  0.83  ‐4.19 ‐30

B02 0.52 0.49  0.64  28.33 ‐150

B03 0.94 0.92  0.95  ‐2.33 0

1hour AEnKF_AF60min_TW2hr 
B01 0.79  0.70  0.80  3.54 ‐30

B02 0.39  0.47  0.57  26.92 90

B03 0.76  0.81  0.85  ‐1.72 ‐15

3hr 

15min AEnKF_AF15min_TW3hr 
B01 0.68 0.58  0.71  4.99 ‐30

B02 0.36 0.38  0.56  23.80 90

B03 0.98 0.94  0.96  1.73 75

30min AEnKF_AF30min_TW3hr 
B01 0.87 0.78  0.85  3.44 ‐45

B02 0.29 0.31  0.50  33.08 45

B03 0.87 0.82  0.88  3.66 45

1hour AEnKF_AF60min_TW3hr B01 0.57  0.51  0.66  6.04 ‐135
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B02 0.10  0.20  0.37  38.83 ‐135

B03 0.82  0.85  0.88  0.57 0

EnKS 

1hr 

15min EnKS_AF15min_TW1hr 
B01 0.89 0.91  0.93  2.27 ‐45

B02 0.71 0.58  0.72  22.10 ‐30

B03 0.83 0.76  0.79  5.20 ‐15

30min EnKS_AF30min_TW1hr 
B01 0.76 0.74  0.81  3.72 ‐180

B02 0.17 0.27  0.38  39.92 ‐165

B03 0.88 0.80  0.84  4.67 30

1hour EnKS_AF60min_TW1hr 
B01 0.66 0.72  0.79  0.80 ‐90

B02 -0.01 0.13  0.32  41.47 60

B03 0.43 0.50  0.57  11.94 ‐270

2hr 

15min EnKS_AF15min_TW2hr 
B01 0.98 0.95  0.97  1.45 ‐15

B02 0.67 0.80  0.77  0.92 90

B03 0.85 0.76  0.83  7.85 15

30min EnKS_AF30min_TW2hr 
B01 0.83 0.70  0.79  4.45 0

B02 0.57 0.53  0.62  26.87 45

B03 0.78 0.74  0.81  4.18 ‐15

1hour EnKS_AF60min_TW2hr 
B01 0.76 0.65  0.75  5.00 ‐90

B02 0.49 0.45  0.58  29.58 30

B03 0.61 0.66  0.73  4.08 ‐165

3hr 

15min EnKS_AF15min_TW3hr 
B01 0.91 0.84  0.89  2.81 ‐60

B02 0.61 0.78  0.78  2.67 90

B03 0.77 0.87  0.87  ‐4.63 135

30min EnKS_AF30min_TW3hr 
B01 0.85 0.75  0.82  4.13 ‐150

B02 0.43 0.46  0.59  23.98 90

B03 0.79 0.84  0.84  1.09 45

1hour EnKS_AF60min_TW3hr 
B01 0.81 0.79  0.85  2.68 ‐60

B02 0.15 0.32  0.43  31.36 90

B03 0.52 0.49  0.64  14.01 75

 1297 

  1298 
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Table 3 - Perturbation methods and parameters applied in this study. 1299 

Fields Distribution 
Perturbing 
Approach 

Parameters 

NU-WRF QPFs 
Log-Normal, 
LogN(,)

Multiplicative 
=0 
=0.5 

SW Radiation 
Log-Normal, 
LogN(,) 

Multiplicative 
=0 
=0.1 

Other atmospheric 
forcing  
(LW Rad., air temp., 
etc.) 

Normal, 
N(,) 

Additive 

=0 for all 
fields. 
LW: =15 
Temp: =5 
Press: =25 
SepcHumi: 
=0.8×10-3 
Wind: =3 

Soil Moisture 
Normal, 
N(,) 

Additive 
=0 
=0.05×	 top 

Saturated Hydraulic 
conductivity 

Normal, 
N(,) 

Additive 
=0 
=10-6 

Power n 
Normal, 
N(,) 

Additive 
=0 
=1.5 

Discharge observation 
Normal, 
N(,) 

Additive 
=0 
=0.1×Qobs 

 1300 

  1301 
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Table 4 – Evaluation metrics of forecast results with 6 hour to 15 hour maximum leading time 1302 
using the identified best DA scheme for each basin.  1303 

Basins Metric 6hr 9hr 12hr 15hr 
Forecast 
w/o DA 

Basin01 
(Best DA: EnKS_AF15min_TW2hr) 

NSE  0.28 0.53 0.75 0.43  ‐11.26

KGE1  0.5 0.53 0.77 0.41  ‐1.29

KGE2  0.5 0.56 0.72 0.52  ‐0.79

EPV  1.87 5.86 3.12 6.75  ‐14.20

EPT  240 ‐75 ‐105 45  120

Basin02 
(Best DA: EnKS_AF15min_TW1hr) 

NSE  0.43 0.25 ‐0.19 ‐0.10  ‐0.04

KGE1  0.54 0.48 0.39 0.29  0.43

KGE2  0.61 0.54 0.28 0.28  0.49

EPV  6.61 5.75 ‐17.59 1.12  ‐40.06

EPT  120 120 120 120  120

Basin03 
(Best DA: AEnKF_AF15min_TW2hr)

NSE  0.87 0.78 0.72 0.51  ‐13.81

KGE1  0.9 0.86 0.85 0.54  ‐1.78

KGE2  0.9 0.81 0.86 0.67  ‐0.95

EPV  ‐3.19 ‐8.62 ‐2.73 8.44  ‐51.39

EPT  0 75 0 30  75

 1304 

 1305 

Metrics and Max. 
Forecasting lead 
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 1306 

Figure 1 – The operational hydrological forecasts during the IPHEx-IOP were conducted at 12 1307 

small basins that are not limited by dam operation (labeled in panel b)), and are critical 1308 

headwater catchments of the Pigeon River Basin (Basin 1-3), the Upper French Broad River 1309 

Basin (Basin 4-5), the Upper Broad River Basin (Basin 6-7), the Upper Catawba River Basin 1310 

(Basin 9-10) and the upper Yadkin River Basin (Basin 11-12). Green dots represent the 1311 

forecasting locations which are collocated with USGS stream gauges. A dense observation 1312 

network including rain gauges from NASA, Duke PMM, HADS and ECONet in the Pigeon 1313 

River Basin are shown in the panel c).     1314 
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 1315 

 1316 

Figure 2 – The workflow for producing daily forecasts/hindcasts and assessment metrics at Duke 1317 

(Barros et al. 2014).  1318 

 1319 
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 1320 

Figure 3 – The left panel shows Nu-WRF nested modeling domains during the IPHEx campaign; 1321 

the right panel shows the position of the 3rd domain (the most inner) of NU-WRF, the IPHEx 1322 

domain and the IPHEx-IOP domain using air temperature as an example.  1323 

 1324 

 1325 

  1326 
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 1327 

Figure 4 – IPHEx-IOP Forecast/Hindcast overview (May to June 15, 2014) for Basin 1 to 5 and 1328 

Basin 10, the largest basin. Dark blue represents QPE/QPF; black lines represent discharge 1329 

observations; green lines are streamflow hindcast with Q3 as rainfall input and other atmospheric 1330 

forcing data from Nu-WRF; red lines are streamflow forecast with all the atmospheric forcing 1331 

fields from Nu-WRF. 1332 

 1333 

  1334 
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 1335 

Figure 5 – Daily rainfall accumulation on May 15, 2014 from ground radar-based QPEs 1336 

(StageIV and Q3), satellite QPE (IMERG), QPFs from Nu-WRF operationally used in the 1337 

IPHEx-IOP, and the QPFs from Nu-WRF with assimilation of conventional ground-based 1338 

observations (DA CNT) and  satellite-based data (DA SAT), i.e. GPM GMI and SSMIS 1339 

precipitation-affected radiance. (Note the scale for QPFs from NU-WRF with DA is different 1340 

from others.) 1341 

  1342 



 

69 
 

 1343 

Figure 6 – IPHEx-IOP Forecast/Hindcast results for the largest event over the IPHEx (May 15, 1344 

2014) for all the basins. Dark blue represents QPE (StageIV and Q3) or QPF (Nu-WRF forecast); 1345 

black lines represent discharge observations; blue and green lines are streamflow hindcasts with 1346 

rainfall input from Q3 (MW) and StageIV (SW), respectively; red and pink lines are streamflow 1347 

forecast with all the atmospheric forcing fields from Nu-WRF initialized using hindcast results 1348 

from MW and SW, respectively. 1349 

  1350 
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 1351 

Figure 7 – Daily rainfall accumulation on May 15, 2014 from the NOAA X-band dual polarized (NOXP) radar deployed in the Pigeon 1352 

River Basin. The hybrid data was produced by choosing the cleanest/lowest elevation angle for each azimuth from multiple elevation 1353 

angles (from 0.5 to 8 degrees). Two other gridded NOXP data with elevation angles at 1.8 degree and 2.4 degree were also used in this 1354 

study. 1355 

 1356 
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 1357 

Figure 8 – Forecast/hindcast results on May 15, 2014 using multiple QPEs (Q3, StageIV, NOXP 1358 

data at 1.8 degree and 2.4 degree elevation angles and the hybrid data, and IMERG) and QPF 1359 

from Nu-WRF in headwater catchments in the Pigeon River Basin (Basin 1 – 3, from left to 1360 

right). 1361 

 1362 

  1363 
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 1364 

Figure 9 – Forecast results on May 15, 2014 using the improved NU-WRF QPFs by assimilating 1365 

conventional ground-based observations (DA-CNT), and assimilating satellite-based data (DA-1366 

SAT) (GPM GMI and SSMIS precipitation-affected radiance) also for the three headwater 1367 

catchments in the Pigeon River Basin (Basin 1 – 3, from left to right). 1368 

  1369 

  1370 
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 1371 

Figure 10 – Scattering comparison of the original Q3 and the adjusted Q3 data (including 1372 

Q3+_All, Q3+_H/L, and Q3+_CdfThr) with observations from four raingauge networks 1373 

consisting of Duke PMM gauges, NASA dual-platform, HADS and ECONet. Row a) shows the 1374 

comparison for May 15 event, and row b) shows the comparison for data on June 12 (which 1375 

resulted in the response on June 13). 1376 

  1377 
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 1378 

Figure 11 – Daily rainfall accumulation on May 15, 2014 from the original Q3 and the adjusted 1379 

Q3 data (including Q3+_All, Q3+_H/L, and Q3+_CdfThr). Note the adjustment to Q3 data only 1380 

performed in the Pigeon River Basin taking advantage of the high dense rain gauge networks. 1381 

  1382 
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 1383 

Figure 12 – Forecast/hindcast results on May 15, 2014 using the original Q3 and the adjusted Q3 1384 

data (Q3+_*) in headwater catchments in the Pigeon River Basin (Basin 1 – 3, from left to right). 1385 

The grey lines are simulation members using 50 rainfall replicates drawn from normal 1386 

distributions within 70% (row a)) and 95% (row b)) confidence interval (CI) of the regression 1387 

model, explicitly representing the uncertainty associated with Q3+_All. 1388 

  1389 
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 1390 

Figure 13 – Workflow of the hydrological Data Assimilation System (DAS) for the operational 1391 

flood forecast.  1392 
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 1393 

Figure 14 – Hindcast results assimilating discharge observations using three DA scheme, namely 1394 
(a) EnKF, (b) AEnKF and (c) EnKS, with assimilation frequency (AF) from 15min, 30min to 1395 
60min, and assimilating time window (TW) from 1hr, 2hr to 3hr. Panel (d) summarizes the three 1396 
schemes producing the best results indicating by NSE in Table 2. Only the ensemble members 1397 
(50) of the best schemes are shown for each basin, i.e. EnKS_TW15min_TW2hr for Basin 1, 1398 
EnKS_TW15min_TW1hr for Basin 2, and AEnKF_TW15min_TW2hr for Basin 3. NSEs for the 1399 
best performance of DA configuration are marked in the corresponding color in the panel (see 1400 
also table 2). 1401 

 1402 

 1403 
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 1404 

Figure 15 (continued). 1405 

 1406 
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 1407 

Figure 15 – Forecast results with the best DA scheme identified for each basin (i.e. 1408 

EnKS_AF15min_TW2hr for Basin 1, EnKS_AF15min_TW1hr for Basin 2, and 1409 

AEnKF_AF15min_TW2hr for Basin 3) with short to longer lead times (6hr to 15hr). The time 1410 

when the forecast is issued is marked on the time-axis by the dot colored corresponding to 1411 

streamflow forecast. LDT means lead time. 1412 

 1413 

 1414 


